Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Front Genet ; 15: 1385114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689650

RESUMO

Introduction: ALS is a fatal neurodegenerative disease for which underlying mechanisms are incompletely understood. The motor neuron is a central player in ALS pathogenesis but different transcriptome signatures have been derived from bulk analysis of post-mortem tissue and iPSC-derived motor neurons (iPSC-MNs). Methods: This study performed a meta-analysis of six gene expression studies (microarray and RNA-seq) in which laser capture microdissection (LCM) was used to isolate lower motor neurons from post-mortem spinal cords of ALS and control (CTL) subjects. Differentially expressed genes (DEGs) with consistent ALS versus CTL expression differences across studies were identified. Results: The analysis identified 222 ALS-increased DEGs (FDR <0.10, SMD >0.80) and 278 ALS-decreased DEGs (FDR <0.10, SMD < -0.80). ALS-increased DEGs were linked to PI3K-AKT signaling, innate immunity, inflammation, motor neuron differentiation and extracellular matrix. ALS-decreased DEGs were associated with the ubiquitin-proteosome system, microtubules, axon growth, RNA-binding proteins and synaptic membrane. ALS-decreased DEG mRNAs frequently interacted with RNA-binding proteins (e.g., FUS, HuR). The complete set of DEGs (increased and decreased) overlapped significantly with genes near ALS-associated SNP loci (p < 0.01). Transcription factor target motifs with increased proximity to ALS-increased DEGs were identified, most notably DNA elements predicted to interact with forkhead transcription factors (e.g., FOXP1) and motor neuron and pancreas homeobox 1 (MNX1). Some of these DNA elements overlie ALS-associated SNPs within known enhancers and are predicted to have genotype-dependent MNX1 interactions. DEGs were compared to those identified from SOD1-G93A mice and bulk spinal cord segments or iPSC-MNs from ALS patients. There was good correspondence with transcriptome changes from SOD1-G93A mice (r ≤ 0.408) but most DEGs were not differentially expressed in bulk spinal cords or iPSC-MNs and transcriptome-wide effect size correlations were weak (bulk tissue: r ≤ 0.207, iPSC-MN: r ≤ 0.037). Conclusion: This study defines a robust transcriptome signature from LCM-based motor neuron studies of post-mortem tissue from ALS and CTL subjects. This signature differs from those obtained from analysis of bulk spinal cord segments and iPSC-MNs. Results provide insight into mechanisms underlying gene dysregulation in ALS and highlight connections between these mechanisms, ALS genetics, and motor neuron biology.

2.
Front Lupus ; 22024.
Artigo em Inglês | MEDLINE | ID: mdl-38707772

RESUMO

Background/Purpose: Cutaneous lupus erythematosus (CLE) affects up to 70% of patients with systemic lupus erythematosus (SLE), and type I interferons (IFNs) are important promoters of SLE and CLE. Our previous work identified IFN-kappa (IFN-κ), a keratinocyte-produced type I IFN, as upregulated in non-lesional and lesional lupus skin and as a critical regulator for enhanced UVB-mediated cell death in SLE keratinocytes. Importantly, the molecular mechanisms governing regulation of IFN-κ expression have been relatively unexplored. Thus, this study sought to identify critical regulators of IFN-κ and identified a novel role for IFN-beta (IFN-ß). Methods: Human N/TERT keratinocytes were treated with the RNA mimic poly (I:C) or 50 mJ/cm2 ultraviolet B (UVB), followed by mRNA expression quantification by RT-qPCR in the presence or absence neutralizing antibody to the type I IFN receptor (IFNAR). IFNB and STAT1 knockout (KO) keratinocytes were generated using CRISPR/Cas9. Results: Time courses of poly(I:C) and UVB treatment revealed a differential expression of IFNB, which was upregulated between 3-6 hours and IFNK, which was upregulated 24 hours after stimulation. Intriguingly, only IFNK expression was substantially abrogated by neutralizing antibodies to IFNAR, suggesting that IFNK upregulation required type I IFN signaling for induction. Indeed, deletion of IFNB abrogated IFNK expression. Further exploration confirmed a role for type I IFN-triggered STAT1 activation. Conclusion: Collectively, our work describes a novel mechanistic paradigm in keratinocytes in which initial IFN-κ induction in response to poly(I:C) and UVB is IFNß1-dependent, thus describing IFNK as both an IFN gene and an interferon-stimulated gene.

3.
JCI Insight ; 9(8)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470486

RESUMO

IL-17C is an epithelial cell-derived proinflammatory cytokine whose transcriptional regulation remains unclear. Analysis of the IL17C promoter region identified TCF4 as putative regulator, and siRNA knockdown of TCF4 in human keratinocytes (KCs) increased IL17C. IL-17C stimulation of KCs (along with IL-17A and TNF-α stimulation) decreased TCF4 and increased NFKBIZ and ZC3H12A expression in an IL-17RA/RE-dependent manner, thus creating a feedback loop. ZC3H12A (MCPIP1/Regnase-1), a transcriptional immune-response regulator, also increased following TCF4 siRNA knockdown, and siRNA knockdown of ZC3H12A decreased NFKBIZ, IL1B, IL36G, CCL20, and CXCL1, revealing a proinflammatory role for ZC3H12A. Examination of lesional skin from the KC-Tie2 inflammatory dermatitis mouse model identified decreases in TCF4 protein concomitant with increases in IL-17C and Zc3h12a that reversed following the genetic elimination of Il17c, Il17ra, and Il17re and improvement in the skin phenotype. Conversely, interference with Tcf4 in KC-Tie2 mouse skin increased Il17c and exacerbated the inflammatory skin phenotype. Together, these findings identify a role for TCF4 in the negative regulation of IL-17C, which, alone and with TNF-α and IL-17A, feed back to decrease TCF4 in an IL-17RA/RE-dependent manner. This loop is further amplified by IL-17C-TCF4 autocrine regulation of ZC3H12A and IL-17C regulation of NFKBIZ to promote self-sustaining skin inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Interleucina-17 , Queratinócitos , Receptores de Interleucina-17 , Ribonucleases , Transdução de Sinais , Fator de Transcrição 4 , Animais , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Camundongos , Queratinócitos/metabolismo , Ribonucleases/metabolismo , Ribonucleases/genética , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Inflamação/metabolismo , Inflamação/genética , Modelos Animais de Doenças , Epiderme/metabolismo , Dermatite/metabolismo , Dermatite/genética , Dermatite/imunologia , Dermatite/patologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica
4.
iScience ; 27(2): 108986, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327798

RESUMO

Interferon (IFN) activity exhibits a gender bias in human skin, skewed toward females. We show that HERC6, an IFN-induced E3 ubiquitin ligase, is induced in human keratinocytes through the epidermal type I IFN; IFN-κ. HERC6 knockdown in human keratinocytes results in enhanced induction of interferon-stimulated genes (ISGs) upon treatment with a double-stranded (ds) DNA STING activator cGAMP but not in response to the RNA-sensing TLR3 agonist. Keratinocytes lacking HERC6 exhibit sustained STING-TBK1 signaling following cGAMP stimulation through modulation of LATS2 and TBK1 activity, unmasking more robust ISG responses in female keratinocytes. This enhanced female-biased immune response with loss of HERC6 depends on VGLL3, a regulator of type I IFN signature. These data identify HERC6 as a previously unrecognized negative regulator of ISG expression specific to dsDNA sensing and establish it as a regulator of female-biased immune responses through modulation of STING signaling.

5.
Br J Dermatol ; 190(4): 536-548, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979162

RESUMO

BACKGROUND: Skin barrier dysfunction may both initiate and aggravate skin inflammation. However, the mechanisms involved in the inflammation process remain largely unknown. OBJECTIVES: We sought to determine how skin barrier dysfunction enhances skin inflammation and molecular mechanisms. METHODS: Skin barrier defect mice were established by tape stripping or topical use of acetone on wildtype mice, or filaggrin deficiency. RNA-Seq was employed to analyse the differentially expressed genes in mice with skin barrier defects. Primary human keratinocytes were transfected with formylpeptide receptor (FPR)1 or protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) small interfering RNA to examine the effects of these gene targets. The expressions of inflammasome NOD-like receptor (NLR)C4, epidermal barrier genes and inflammatory mediators were evaluated. RESULTS: Mechanical (tape stripping), chemical (acetone) or genetic (filaggrin deficiency) barrier disruption in mice amplified the expression of proinflammatory genes, with transcriptomic profiling revealing overexpression of formylpeptide receptor (Fpr1) in the epidermis. Treatment with the FPR1 agonist fMLP in keratinocytes upregulated the expression of the NLRC4 inflammasome and increased interleukin-1ß secretion through modulation of ER stress via the PERK-eIF2α-C/EBP homologous protein pathway. The activation of the FPR1-NLRC4 axis was also observed in skin specimens from old healthy individuals with skin barrier defect or elderly mice. Conversely, topical administration with a FPR1 antagonist, or Nlrc4 silencing, led to the normalization of barrier dysfunction and alleviation of inflammatory skin responses in vivo. CONCLUSIONS: In summary, our findings show that the FPR1-NLRC4 inflammasome axis is activated upon skin barrier disruption and may explain exaggerated inflammatory responses that are observed in disease states characterized by epidermal dysfunction. Pharmacological inhibition of FPR1 or NLRC4 represents a potential therapeutic target.


Assuntos
Dermatite , Proteínas Filagrinas , Animais , Humanos , Camundongos , Acetona/metabolismo , Acetona/farmacologia , Dermatite/metabolismo , Epiderme/metabolismo , Inflamassomos/metabolismo , Inflamação , Queratinócitos/metabolismo , Proteínas NLR/metabolismo
6.
Antioxidants (Basel) ; 12(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371898

RESUMO

The cumulative damage skin sustains from exposure to environmental stressors throughout life exerts significant effects on skin aging and cancer development. One of the main ways by which environmental stressors mediate their effects within skin is through induction of reactive oxygen species (ROS). In this review, we chronicle the multiple properties by which acetyl zingerone (AZ) as a skincare ingredient can benefit skin (1) by helping manage overproduction of ROS through multiple routes as an antioxidant, physical quencher and selective chelator, (2) by fortifying protection after UV exposure ends to prevent the type of epidermal DNA damage that correlates with development of skin cancer, (3) by modulating matrisome activity and nurturing the integrity of the extracellular matrix (ECM) within the dermis and (4) through its proficient ability to neutralize singlet oxygen, by stabilizing the ascorbic acid precursor tetrahexyldecyl ascorbate (THDC) in the dermal microenvironment. This activity improves THDC bioavailability and may blunt pro-inflammatory effects of THDC, such as activation of type I interferon signaling. Moreover, AZ is photostable and can sustain its properties during UV exposure, in contrast to α-tocopherol. All these properties of AZ translate into measurable clinical benefits to improve the visual appearance of photoaged facial skin and to strengthen the skin's own defenses against sun damage.

7.
JID Innov ; 3(3): 100178, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36992949

RESUMO

The endocannabinoid (eCB) system plays an active role in epidermal homeostasis. Phytocannabinoids such as cannabidiol modulate this system but also act through eCB-independent mechanisms. This study evaluated the effects of cannabidiol, bakuchiol (BAK), and ethyl (linoleate/oleate) (ELN) in keratinocytes and reconstituted human epidermis. Molecular docking simulations showed that each compound binds the active site of the eCB carrier FABP5. However, BAK and ethyl linoleate bound this site with the highest affinity when combined 1:1 (w/w), and in vitro assays showed that BAK + ELN most effectively inhibited FABP5 and fatty acid amide hydrolase. In TNF-stimulated keratinocytes, BAK + ELN reversed TNF-induced expression shifts and uniquely downregulated type I IFN genes and PTGS2 (COX2). BAK + ELN also repressed expression of genes linked to keratinocyte differentiation but upregulated those associated with proliferation. Finally, BAK + ELN inhibited cortisol secretion in reconstituted human epidermis skin (not observed with cannabidiol). These results support a model in which BAK and ELN synergistically interact to inhibit eCB degradation, favoring eCB mobilization and inhibition of downstream inflammatory mediators (e.g., TNF, COX-2, type I IFN). A topical combination of these ingredients may thus enhance cutaneous eCB tone or potentiate other modulators, suggesting novel ways to modulate the eCB system for innovative skincare product development.

8.
Cell Rep ; 42(1): 111994, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36732947

RESUMO

Palmoplantar skin is structurally and functionally unique, but the transcriptional programs driving this specialization are unclear. Here, we use bulk and single-cell RNA sequencing of human palm, sole, and hip skin to describe the distinguishing characteristics of palmoplantar and non-palmoplantar skin while also uncovering differences between palmar and plantar sites. Our approach reveals an altered immune environment in palmoplantar skin, with downregulation of diverse immunological processes and decreased immune cell populations. Further, we identify specific fibroblast populations that appear to orchestrate key differences in cell-cell communication in palm, sole, and hip. Dedicated keratinocyte analysis highlights major differences in basal cell fraction among the three sites and demonstrates the existence of two spinous keratinocyte populations constituting parallel, site-selective epidermal differentiation trajectories. In summary, this deep characterization of highly adapted palmoplantar skin contributes key insights into the fundamental biology of human skin and provides a valuable data resource for further investigation.


Assuntos
Queratinócitos , Pele , Humanos , Diferenciação Celular , Mãos , Células Cultivadas , Epiderme
9.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430783

RESUMO

Atopic dermatitis (AD) is a chronic disease in which epidermal barrier disruption triggers Th2-mediated eruption of eczematous lesions. Topical emollients are a cornerstone of chronic management. This study evaluated efficacy of two plant-derived oil derivatives, isosorbide di-(linoleate/oleate) (IDL) and isosorbide dicaprylate (IDC), using AD-like tissue culture models. Treatment of reconstituted human epidermis with cytokine cocktail (IL-4 + IL-13 + TNF-α + IL-31) compromised the epidermal barrier, but this was prevented by co-treatment with IDL and IDC. Cytokine stimulation also dysregulated expression of keratinocyte (KC) differentiation genes whereas treatment with IDC or IDL + IDC up-regulated genes associated with early (but not late) KC differentiation. Although neither IDL nor IDC inhibited Th2 cytokine responses, both compounds repressed TNF-α-induced genes and IDL + IDC led to synergistic down-regulation of inflammatory (IL1B, ITGA5) and neurogenic pruritus (TRPA1) mediators. Treatment of cytokine-stimulated skin explants with IDC decreased lactate dehydrogenase (LDH) secretion by more than 50% (more than observed with cyclosporine) and in vitro LDH activity was inhibited by IDL and IDC. These results demonstrate anti-inflammatory mechanisms of isosorbide fatty acid diesters in AD-like skin models. Our findings highlight the multifunctional potential of plant oil derivatives as topical ingredients and support studies of IDL and IDC as therapeutic candidates.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Citocinas , Ácidos Graxos , Isossorbida , Fator de Necrose Tumoral alfa/farmacologia , Óleos de Plantas , Ácido Oleico
10.
Aging Cell ; 21(12): e13733, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36281624

RESUMO

There is growing interest in the use of metformin to extend lifespan and prevent the onset of age-related disorders in non-diabetic individuals. The impact of metformin on lifespan and aging has been studied in several model organisms, with varying effects. We conducted a systematic review of studies that performed laboratory experiments investigating the effect of metformin on overall lifespan in healthy Mus musculus mice and in Caenorhabditis elegans nematodes. Lifespan results for mice and nematodes were analyzed in separate meta-analyses, and there was a significant amount of heterogeneity across experiments within each species. We found that metformin was not significantly associated with an overall lifespan-prolonging effect in either mice or nematodes. For nematodes, however, there was a lifespan-prolonging effect in experiments using live OP50 Escherichia coli as a food source, an effect that was larger when metformin was started earlier in life. Our work highlights the importance of testing compounds in a diversity of model organisms. Moreover, in all species, including humans, it may be necessary to study the effect of metformin on aging in both younger and older cohorts.


Assuntos
Proteínas de Caenorhabditis elegans , Metformina , Humanos , Camundongos , Animais , Caenorhabditis elegans , Metformina/farmacologia , Longevidade , Envelhecimento
11.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35455458

RESUMO

Dimethyl fumarate (DMF) has emerged as a first-line therapy for relapsing-remitting multiple sclerosis (RRMS). This treatment, however, has been limited by adverse effects, which has prompted development of novel derivatives with improved tolerability. We compared the effects of fumarates on gene expression in astrocytes. Our analysis included diroximel fumarate (DRF) and its metabolite monomethyl fumarate (MMF), along with a novel compound isosorbide di-(methyl fumarate) (IDMF). Treatment with IDMF resulted in the largest number of differentially expressed genes. The effects of DRF and MMF were consistent with NRF2 activation and NF-κB inhibition, respectively. IDMF responses, however, were concordant with both NRF2 activation and NF-κB inhibition, and we confirmed IDMF-mediated NF-κB inhibition using a reporter assay. IDMF also down-regulated IRF1 expression and IDMF-decreased gene promoters were enriched with IRF1 recognition sequences. Genes altered by each fumarate overlapped significantly with those near loci from MS genetic association studies, but IDMF had the strongest overall effect on MS-associated genes. These results show that next-generation fumarates, such as DRF and IDMF, have effects differing from those of the MMF metabolite. Our findings support a model in which IDMF attenuates oxidative stress via NRF2 activation, with suppression of NF-κB and IRF1 contributing to mitigation of inflammation and pyroptosis.

12.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905516

RESUMO

Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.


Assuntos
Desmogleína 1/imunologia , Desmossomos/imunologia , Queratinócitos/imunologia , Pênfigo/imunologia , Células Th17/imunologia , Animais , Desmogleína 1/genética , Desmossomos/genética , Camundongos , Pênfigo/genética
13.
Ann Rheum Dis ; 81(4): 516-523, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34937693

RESUMO

OBJECTIVES: Determine relationships between skin gene expression and systemic sclerosis (SSc) clinical disease features, and changes in skin gene expression over time. METHODS: A total of 339 forearm skin biopsies were obtained from 113 SSc patients and 44 matched healthy controls. 105 SSc patients had a second biopsy, and 76 had a third biopsy. Global gene expression profiling was performed, and differentially expressed genes and cell type-specific signatures in SSc were evaluated for relationships to modified Rodnan Skin Score (mRSS) and other clinical variables. Changes in skin gene expression over time were analysed by mixed effects models and principal component analysis. Immunohistochemical staining was performed to validate conclusions. RESULTS: Gene expression dysregulation was greater in SSc patients with affected skin than in those with unaffected skin. Immune cell and fibroblast signatures positively correlated with mRSS. High baseline immune cell and fibroblast signatures predicted higher mRSS over time, but were not independently predictive of longitudinal mRSS after adjustment for baseline mRSS. In early diffuse cutaneous SSc, immune cell and fibroblast signatures declined over time, and overall skin gene expression trended towards normalisation. On immunohistochemical staining, most early diffuse cutaneous SSc patients with high baseline T cell and macrophage numbers had declines in these numbers at follow-up. CONCLUSIONS: Skin thickness in SSc is related to dysregulated immune cell and fibroblast gene expression. Skin gene expression changes over time in early diffuse SSc, with a tendency towards normalisation. These observations are relevant for understanding SSc pathogenesis and could inform treatment strategies and clinical trial design.


Assuntos
Esclerodermia Difusa , Esclerodermia Localizada , Escleroderma Sistêmico , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Esclerodermia Difusa/patologia , Esclerodermia Localizada/metabolismo , Escleroderma Sistêmico/patologia , Pele/patologia
14.
JID Innov ; 1(4): 100040, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34909741

RESUMO

Dimethyl fumarate (DMF) is an effective oral treatment for psoriasis administered in Europe for nearly 60 years. However, its potential has been limited by contact dermatitis that prohibits topical application. This paper characterizes a DMF derivative, isosorbide DMF (IDMF), which was designed to have antipsoriatic effects without skin-sensitizing properties. We show that IDMF exhibits neither genotoxicity nor radiation sensitivity in skin fibroblasts and is nonirritating and nonsensitizing in animal models (rat, rabbit, guinea pig). Microarray analysis of cytokine-stimulated keratinocytes showed that IDMF represses the expression of genes specifically upregulated in psoriatic skin lesions but not those of other skin diseases. IDMF also downregulated genes induced by IL-17A and TNF in keratinocytes as well as predicted targets of NF-κB and the antidifferentiation noncoding RNA (i.e., ANCR). IDMF further stimulated the transcription of oxidative stress response genes (NQO1, GPX2, GSR) with stronger NRF2/ARE activation compared to DMF. Finally, IDMF reduced erythema and scaling while repressing the expression of immune response genes in psoriasiform lesions elicited by topical application of imiquimod in mice. These data show that IDMF exhibits antipsoriatic activity that is similar or improved compared with that exhibited by DMF, without the harsh skin-sensitizing effects that have prevented topical delivery of the parent molecule.

15.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491907

RESUMO

Altered epidermal differentiation along with increased keratinocyte proliferation is a characteristic feature of psoriasis and pityriasis rubra pilaris (PRP). However, despite this large degree of overlapping clinical and histologic features, the molecular signatures these skin disorders share are unknown. Using global transcriptomic profiling, we demonstrate that plaque psoriasis and PRP skin lesions have high overlap, with all differentially expressed genes in PRP relative to normal skin having complete overlap with those in psoriasis. The major common pathway shared between psoriasis and PRP involves the phospholipases PLA2G2F, PLA2G4D, and PLA2G4E, which were found to be primarily expressed in the epidermis. Gene silencing each of the 3 PLA2s led to reduction in immune responses and epidermal thickness both in vitro and in vivo in a mouse model of psoriasis, establishing their proinflammatory roles. Lipidomic analyses demonstrated that PLA2s affect mobilization of a phospholipid-eicosanoid pool, which is altered in psoriatic lesions and functions to promote immune responses in keratinocytes. Taken together, our results highlight the important role of PLA2s as regulators of epidermal barrier homeostasis and inflammation, identify PLA2s as a shared pathogenic mechanism between PRP and psoriasis, and as potential therapeutic targets for both diseases.


Assuntos
Fosfolipases A2/metabolismo , Pitiríase Rubra Pilar/enzimologia , Psoríase/enzimologia , Animais , Humanos , Camundongos
16.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445461

RESUMO

Tetrahexyldecyl Ascorbate (THDC) is an L-ascorbic acid precursor with improved stability and ability to penetrate the epidermis. The stability and transdermal penetration of THDC, however, may be compromised by the oxidant-rich environment of human skin. In this study, we show that THDC is a poor antioxidant that degrades rapidly when exposed to singlet oxygen. This degradation, however, was prevented by combination with acetyl zingerone (AZ) as a stabilizing antioxidant. As a standalone ingredient, THDC led to unexpected activation of type I interferon signaling, but this pro-inflammatory effect was blunted in the presence of AZ. Moreover, the combination of THDC and AZ increased expression of genes associated with phospholipid homeostasis and keratinocyte differentiation, along with repression of MMP1 and MMP7 expression, inhibition of MMP enzyme activity, and increased production of collagen proteins by dermal fibroblasts. Lastly, whereas THDC alone reduced viability of keratinocytes exposed to oxidative stress, this effect was completely abrogated by the addition of AZ to THDC. These results show that AZ is an effective antioxidant stabilizer of THDC and that combination of these products may improve ascorbic acid delivery. This provides a step towards reaching the full potential of ascorbate as an active ingredient in topical preparations.


Assuntos
Antioxidantes , Ácido Ascórbico , Colágeno/biossíntese , Fibroblastos/metabolismo , Guaiacol/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Ácido Ascórbico/farmacocinética , Ácido Ascórbico/farmacologia , Linhagem Celular , Guaiacol/farmacocinética , Guaiacol/farmacologia , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-34234902

RESUMO

BACKGROUND: Cardiopulmonary resuscitation (CPR) is occurring more frequently at community hospitals but most patients undergoing CPR do not survive to discharge. Tools to predict CPR survival can be improved by the identification of high-yield clinical indicators. OBJECTIVE: To identify variables associated with survival to discharge following in-hospital cardiac arrest. METHODS: Retrospective cohort study of 463,530 hospital admissions from the Nationwide Inpatient Sample (2012-2016). The analysis includes adults (age ≥50) who underwent in-hospital CPR at US community hospitals. RESULTS: Overall survival to discharge was 29.8% (95% CI: 29.5-30.1%). Age was the strongest predictor of survival and had greater prognostic value than the Charlson comorbidity index. Obesity was associated with improved survival (35.9%, 95% CI: 35.1-36.7%), whereas underweight patients had decreased survival (24.0%, 95% CI: 22.2-25.7%). Acute indicators of poor survival included hyperkalemia, hypercalcemia, and sepsis. We generated an ABCD index based upon four high-yield variables (age, body habitus, comorbidity, day of hospital admission). An ABCD score of 2 or less was a sensitive but non-specific predictor of post-CPR survival (96.8% sensitivity, 95% CI: 96.6-97.0), and those with extreme scores differed 3.8-fold with respect to post-CPR survival probability (46.0% versus 12.1%). CONCLUSION: Age is the strongest predictor of post-CPR survival, but body habitus is also an important indicator that may currently be underutilized. Our results support improved post-CPR survival of obese patients, consistent with an 'obesity paradox'. The ABCD score provides an efficient means of risk-stratifying patients and can be calculated in less than 1 minute.

18.
J Invest Dermatol ; 141(10): 2436-2448, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33864770

RESUMO

Many inflammatory skin diseases are characterized by altered epidermal differentiation. Whether this altered differentiation promotes inflammatory responses has been unknown. Here, we show that IRAK2, a member of the signaling complex downstream of IL-1 and IL-36, correlates positively with disease severity in both atopic dermatitis and psoriasis. Inhibition of epidermal IRAK2 normalizes differentiation and inflammation in two mouse models of psoriasis- and atopic dermatitis-like inflammation. Specifically, we demonstrate that IRAK2 ties together proinflammatory and differentiation-dependent responses and show that this function of IRAK2 is specific to keratinocytes and acts through the differentiation-associated transcription factor ZNF750. Taken together, our findings suggest that IRAK2 has a critical role in promoting feed-forward amplification of inflammatory responses in skin through modulation of differentiation pathways and inflammatory responses.


Assuntos
Epiderme/patologia , Inflamação/etiologia , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Diferenciação Celular , Células Cultivadas , Dermatite Atópica/etiologia , Humanos , NF-kappa B/fisiologia , Psoríase/etiologia , Índice de Gravidade de Doença , Transdução de Sinais , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia
19.
J Invest Dermatol ; 141(6): 1416-1427.e12, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33181142

RESUMO

The breakdown of the epidermal barrier and consequent loss of skin hydration is a feature of skin aging and eczematous dermatitis. Few treatments, however, resolve these underlying processes to provide full symptomatic relief. In this study, we evaluated isosorbide di-(linoleate/oleate) (IDL), which was generated by esterifying isosorbide with sunflower fatty acids. Topical effects of IDL in skin were compared with those of ethyl linoleate/oleate, which has previously been shown to improve skin barrier function. Both IDL and ethyl linoleate/oleate downregulated inflammatory gene expression, but IDL more effectively upregulated the expression of genes associated with keratinocyte differentiation (e.g., KRT1, GRHL2, SPRR4). Consistent with this, IDL increased the abundance of epidermal barrier proteins (FLG and involucrin) and prevented cytokine-mediated stratum corneum degradation. IDL also downregulated the expression of unhealthy skin signature genes linked to the loss of epidermal homeostasis and uniquely repressed an IFN-inducible coexpression module activated in multiple skin diseases, including psoriasis. In a double-blind, placebo-controlled trial enrolling females with dry skin, 2% IDL lotion applied over 2 weeks significantly improved skin hydration and decreased transepidermal water loss (NCT04253704). These results demonstrate mechanisms by which IDL improves skin hydration and epidermal barrier function, supporting IDL as an effective intervention for the treatment of xerotic pruritic skin.


Assuntos
Dermatite Atópica/tratamento farmacológico , Emolientes/administração & dosagem , Queratinócitos/efeitos dos fármacos , Creme para a Pele/administração & dosagem , Perda Insensível de Água/efeitos dos fármacos , Adulto , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Dermatite Atópica/patologia , Método Duplo-Cego , Emolientes/efeitos adversos , Emolientes/química , Epiderme/efeitos dos fármacos , Epiderme/patologia , Feminino , Proteínas Filagrinas , Seguimentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Isossorbida/administração & dosagem , Isossorbida/efeitos adversos , Isossorbida/química , Queratinócitos/patologia , Ácido Linoleico/administração & dosagem , Ácido Linoleico/efeitos adversos , Ácido Linoleico/química , Pessoa de Meia-Idade , Ácido Oleico/administração & dosagem , Ácido Oleico/efeitos adversos , Ácido Oleico/química , Creme para a Pele/efeitos adversos , Creme para a Pele/química , Resultado do Tratamento
20.
Eur J Dermatol ; 30(5): 469-492, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021480

RESUMO

BACKGROUND: Terminalia chebula (TC) is a deciduous tree of which extracts have demonstrated efficacy for treatment of photodamage, skin aging, and wound healing. However, molecular and cellular mechanisms underlying these benefits remain unclear. OBJECTIVE: To profile dermal expression responses to a standardized tannin-enriched TC fruit extract (Synastol® TC). MATERIALS AND METHODS: Microarrays were used to evaluate gene expression in three-dimensional reconstituted human skin cultures. RESULTS: Genome-wide expression responses to TC were the opposite to those observed in cells exposed to oxidative stress, solar-simulated UV radiation, and wounding, with increased expression of genes associated with water homeostasis, skin barrier establishment, blood vessel development, and circadian rhythms. TC also increased expression of extracellular matrix components, such as collagens (COL1A1, COL1A2) and proteoglycans (PRELP, OGN), and in separate assays, we showed that TC inhibits MMP enzymes (MMP-1, MMP-2, MMP-3, MMP-9, MMP-12) and microbial activity (S. aureus, P. acnes). Unexpectedly, mRNA and protein levels of late keratinocyte (KC) differentiation markers (FLG, LOR) were increased by TC, and expression responses in skin cultures broadly resembled those that occur with KC differentiation. Consistent with these results, TC increased expression of transcription factors regulating KC differentiation (FOS, GHRL3, PPARG) and we noted enrichment of AP-1 binding sites in regions upstream of TC-increased genes. CONCLUSION: These results demonstrate that functionally important TC extract responses occur in the epidermis and are therefore not restricted to the dermal layer. Our findings thus suggest mechanisms by which TC may strengthen full-thickness skin architecture for treatment of skin aging and/or chronic wounds.


Assuntos
Frutas , Análise em Microsséries , Extratos Vegetais/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/genética , Pele/efeitos dos fármacos , Terminalia , Diferenciação Celular , Colagenases/genética , Matriz Extracelular/genética , Proteínas Filagrinas , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Queratinócitos/citologia , Estresse Oxidativo , Pele/lesões , Pele/microbiologia , Pele/efeitos da radiação , Técnicas de Cultura de Tecidos , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...