Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(1): E51-60, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699484

RESUMO

Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Ubiquitina Tiolesterase/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Contagem de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Endopeptidases/genética , Endopeptidases/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Letais , Hematopoese/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/fisiologia , Transativadores , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética
2.
Biol Blood Marrow Transplant ; 19(6): 876-87, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23523972

RESUMO

Bone marrow graft failure and poor graft function are frequent complications after hematopoietic stem cell transplantation and result in significant morbidity and mortality. Both conditions are associated with graft-versus-host disease (GVHD), although the mechanism remains undefined. Here we show, in 2 distinct murine models of GVHD (complete MHC- and class II-disparate) that mimic human peripheral blood stem cell transplantation, that Th1 CD4(+) cells induce bone marrow failure in allogeneic recipients. Bone marrow failure after transplantation of allogeneic naïve CD4(+) T cells was associated with increased CD4(+) Th1 cell development within bone marrow and lymphoid tissues. Using IFNγ-reporter mice, we found that Th1 cells generated during GVHD induced bone marrow failure after transfers into secondary recipients. Homing studies demonstrated that transferred Th1 cells express CXCR4, which was associated with accumulation within bone marrow and spleen. Allogeneic Th1 cells were activated by radiation-resistant host bone marrow cells and induced bone marrow failure through an IFNγ-dependent mechanism. Thus, allogeneic Th1 CD4(+) cells generated during GVHD traffic to hematopoietic sites and induce bone marrow failure via IFNγ-mediated toxicity. These results have important implications for prevention and treatment of bone marrow graft failure after hematopoietic stem cell transplantation.


Assuntos
Células da Medula Óssea/imunologia , Medula Óssea/imunologia , Doença Enxerto-Hospedeiro/imunologia , Interferon gama/imunologia , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Aplasia Pura de Série Vermelha/imunologia , Baço/imunologia , Células Th1/imunologia , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Comunicação Celular , Feminino , Expressão Gênica , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Teste de Histocompatibilidade , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Modelos Animais , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Aplasia Pura de Série Vermelha/etiologia , Aplasia Pura de Série Vermelha/metabolismo , Aplasia Pura de Série Vermelha/patologia , Baço/metabolismo , Baço/patologia , Células Th1/metabolismo , Células Th1/patologia , Transplante Homólogo
3.
Blood ; 111(3): 1567-74, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17967943

RESUMO

The inversion of chromosome 16 in the inv(16)(p13q22) is one of the most frequent cytogenetic abnormalities observed in acute myeloid leukemia (AML). The inv(16) fuses the core binding factor (CBF) beta subunit with the coiled-coil rod domain of smooth muscle myosin heavy chain (SMMHC). Expression of CBFbeta-SMMHC in mice does not promote AML in the absence of secondary mutations. Patient samples with the inv(16) also possess mutually exclusive activating mutations in either N-RAS, K-RAS, or the receptor tyrosine kinases, c-KIT and FLT3, in almost 70% of cases. To test whether an activating mutation of FLT3 (FLT3-ITD) would cooperate with CBFbeta-SMMHC to promote AML, we coexpressed both mutations in hematopoietic progenitor cells used to reconstitute lethally irradiated mice. Analysis of transplanted animals showed strong selection for CBFbeta-SMMHC/FLT3-ITD-expressing cells in bone marrow and peripheral blood. Compared with animals transplanted with only CBFbeta-SMMHC-expressing cells, FLT3-ITD further restricted early myeloid differentiation and promoted peripheralization of primitive myeloblasts as early as 2.5 weeks after transplantation. FLT3-ITD also accelerated disease progression in all CBFbeta-SMMHC/FLT3-ITD-reconstituted animals, which died of a highly aggressive and transplantable AML within 3 to 5 months. These results indicate that FLT3-activating mutations can cooperate with CBFbeta-SMMHC in an animal model of inv(16)-associated AML.


Assuntos
Inversão Cromossômica/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Progressão da Doença , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/genética , Linfopoese , Camundongos , Mutação/genética , Mielopoese , Proteínas de Fusão Oncogênica/genética , Miosinas de Músculo Liso/genética , Miosinas de Músculo Liso/metabolismo , Taxa de Sobrevida , Tirosina Quinase 3 Semelhante a fms/genética
4.
Blood ; 109(5): 2190-7, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17110463

RESUMO

Helios is a zinc-finger protein belonging to the Ikaros family of transcriptional regulators. It is expressed, along with Ikaros, throughout early stages of thymocyte development where it quantitatively associates with Ikaros through C-terminal zinc-finger domains that mediate heterodimerization between Ikaros family members. To understand the role of Helios in T-cell development, we used a retroviral vector to express full-length Helios or a Helios isoform that lacked the N-terminal DNA-binding domain in hematopoietic progenitor cells of reconstituted mice. Constitutive expression of full-length Helios resulted in an inhibition of T-cell development at the double-negative stage within the thymus. Although expression of the DNA-binding mutant of Helios did not contribute to developmental abnormalities at early times after transplantation, 60% of animals that expressed the Helios DNA-binding mutant developed an aggressive and transplantable T-cell lymphoma 4 to 10 months after transplantation. These results demonstrate a vital function for Helios in maintaining normal homeostasis of developing T cells and formally show that non-DNA-binding isoforms of Helios are lymphomagenic if aberrantly expressed within the T-cell lineage.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Células Cultivadas , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Linfoma de Células T/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Timo/citologia , Timo/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
5.
Blood ; 104(13): 3894-900, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15328162

RESUMO

PU.1 is a member of the ETS family of transcription factors and is required for the development of multiple hematopoietic lineages. PU.1(-/-) mice die from hematopoietic failure at about embryonic day 18.5 (e18.5) and show a complete absence of B cells, mature T cells, and macrophages. This phenotype suggests that PU.1 may function at the level of the hematopoietic stem cell (HSC) or a multilineage progenitor. To investigate the role of PU.1 in the regulation of HSCs, PU.1(-/-) embryos were analyzed at various stages of embryonic development. The absolute number and frequency of HSCs were determined by flow cytometric analysis of c-Kit(+)Thy-1.1(lo)Lin(-)Sca-1(+) (KTLS) cells. We found that KTLS cells were absent or severely reduced in PU.1(-/-) fetal liver from e12.5 to e15.5. Progenitor cells with a c-Kit(+)Lin(-)AA4.1(+) and c-Kit(+)Lin(-)CD34(+) phenotype were also severely reduced. In addition, PU.1(-/-) fetal liver at e14.5 lacked common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs) but retained megakaryocyteerythroid progenitors (MEPs). Consistent with the loss of HSC activity, a 10-fold reduction in erythroid progenitors (mature erythroid burst-forming units [BFUEs]) was observed between e14.5 and e16.5. These data suggest that PU.1 plays an important role in the maintenance or expansion of HSC number in murine fetal liver.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Fígado/embriologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/deficiência , Transativadores/fisiologia , Animais , Cruzamentos Genéticos , Feto , Citometria de Fluxo , Fígado/citologia , Fígado/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
6.
J Biol Chem ; 279(1): 34-41, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14559924

RESUMO

Although DNA methylation and transcriptional repression are generally associated, a causal role for DNA methylation in silencing of retroviral vectors has not been established. The newer generation murine stem cell virus retroviral vector (MSCV) lacks many of the repressive cis-acting DNA sequences identified in Moloney murine leukemia virus but remains sensitive to transcriptional silencing in various cell types. To determine the contribution of cytosine methylation to MSCV silencing, we mutated CpG dinucleotides located in the MSCV long terminal repeat (LTR) that are clustered in the U3 region and directly spanning the transcription start site in the R region. Effects of the CpG mutations on MSCV silencing were assessed in murine embryonic stem cells. An analysis of numerous clonal proviral integrants showed that mutation of CpGs in both clusters eliminated proviral integrants that were completely silenced. Variegated expression was shown to represent a substantial component of intraclonal silencing and was independent of the presence of CpGs in the LTR. Treatment of transduced cells with 5-azadeoxycytidine delayed establishment of the silenced state but had only a modest effect on expression of some proviral integrants at late times post-transduction. These results are direct evidence for a causal contribution of DNA methylation in the LTR to MSCV silencing and define the promoter region CpGs as a repressive element in embryonic stem cells. Furthermore, distinct mechanisms are suggested for establishment and maintenance of the silenced proviral state.


Assuntos
Fosfatos de Dinucleosídeos/genética , Inativação Gênica , Vetores Genéticos , Mutação , Retroviridae/genética , Sequências Repetidas Terminais/genética , Animais , Sequência de Bases , Primers do DNA , Genes Reporter , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Dados de Sequência Molecular , Células-Tronco/virologia , Transcrição Gênica/genética , Ativação Transcricional
7.
Mol Cell Biol ; 23(23): 8637-50, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14612407

RESUMO

Although studies have shown that the Notch2 family member is critical for embryonic development, little is known concerning its role in hematopoiesis. In this study, we show that the effects of an activated form of Notch2 (N2IC) on the T-cell lineage are dosage related. High-level expression of N2IC results in the development of T-cell leukemias. In contrast, lower-level expression of N2IC does not lead to transformation but skews thymocyte development to the CD8 lineage. Underlying this skew is a dramatic enhancement in positive selection and CD8SP maturation. N2IC permits early B-cell development but blocks the maturation of conventional B2 cells at the pre-B stage, which is the limit of endogenous Notch2 protein expression in developing B cells. Most strikingly, while B2 B cell development is blocked at the pre-B-cell stage, N2IC promotes the selective development of LPS-responsive B1 B cells. This study implicates a role for Notch2 in the maturation of the CD8 lineage and suggests a novel function for Notch2 in the development of the B1 B-cell subset.


Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Subpopulações de Linfócitos B/imunologia , Sequência de Bases , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , DNA/genética , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptor Notch2 , Receptores de Superfície Celular/genética
8.
J Hematother Stem Cell Res ; 11(3): 449-56, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12183830

RESUMO

The propensity of retroviruses toward transcriptional silencing limits their value as gene therapy vectors. Silencing has been shown to be particularly robust when stem cells are used for transduction, posing a significant problem for gene therapy of hematologic diseases. Stability of proviral expression with newer generation vectors is significantly improved over that obtainable with original vectors based on Moloney murine leukemia virus (MoMLV). However, strategies to increase resistance further to retroviral silencing are needed, because newer generation vectors have been shown to remain prone to a significant degree of silencing that could limit their efficacy as gene therapy vectors. Proviral silencing has been attributed to known mechanisms of cellular gene repression, such as DNA methylation and histone modification, as well as uncharacterized mechanisms that act independently of DNA methylation. A further understanding of transcriptional silencing that occurs in stem cells and during hematopoietic development is needed for design of effective vectors for gene therapy of hematologic diseases.


Assuntos
Inativação Gênica , Vetores Genéticos/genética , Retroviridae/genética , Animais , Regulação Viral da Expressão Gênica , Terapia Genética/normas , Vetores Genéticos/efeitos adversos , Humanos , Transcrição Gênica , Transdução Genética/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA