Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(12): 1980-1989, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38052002

RESUMO

Three-dimensional (3D) cell culture is emerging for drug design and drug screening. Skin toxicity is one of the most important assays for determining the toxicity of a compound before being used in skin application. Much work has been done to find an alternative assay without animal experiments. 3D cell culture is one of the methods that provides clinically relevant models with superior clinical translation compared to that of 2D cell culture. In this study, we developed a spheroid toxicity assay using keratinocyte HaCaT cells with propidium iodide and calcein AM. We also applied the transfer learning-containing convolutional neural network (CNN) to further determine spheroid cell death with fluorescence labeling. Our result shows that the morphologies of the spheroid are the key features in determining the apoptosis cell death of the HaCaT spheroid. Our CNN model provided good statistical measurement in terms of accuracy, precision, and recall in both validation and external test data sets. One can predict keratinocyte spheroid cell death if that spheroid image contains the fluorescence signals from propidium iodide and calcein AM. The CNN model can be accessed in the web application at https://qsarlabs.com/#spheroiddeath.


Assuntos
Técnicas de Cultura de Células , Redes Neurais de Computação , Animais , Propídio , Técnicas de Cultura de Células/métodos , Apoptose
2.
Food Chem Toxicol ; 181: 114115, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863382

RESUMO

Skin irritation is an adverse effect associated with various substances, including chemicals, drugs, or natural products. Dipterocarpol, extracted from Dipterocarpus alatus, contains several skin benefits notably anticancer, wound healing, and antibacterial properties. However, the skin irritation of dipterocarpol remains unassessed. Quantitative structure-activity relationship (QSAR) is a recommended tool for toxicity assessment involving less time, money, and animal testing to access unavailable acute toxicity data. Therefore, our study aimed to develop a highly accurate machine learning-based QSAR model for predicting skin irritation. We utilized a stacked ensemble learning model with 1064 chemicals. We also adhered to the recommendations from the OECD for QSAR validation. Subsequently, we used the proposed model to explore the cytotoxicity of dipterocarpol on keratinocytes. Our findings indicate that the model displayed promising statistical quality in terms of accuracy, precision, and recall in both 10-fold cross-validation and test datasets. Moreover, the model predicted that dipterocarpol does not have skin irritation, which was confirmed by the cell-based assay. In conclusion, our proposed model can be applied for the risk assessment of skin irritation in untested compounds that fall within its applicability domain. The web application of this model is available at https://qsarlabs.com/#stackhacat.


Assuntos
Alternativas aos Testes com Animais , Pele , Animais , Queratinócitos , Relação Quantitativa Estrutura-Atividade
3.
ACS Omega ; 8(23): 20881-20891, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332807

RESUMO

The B-rapidly accelerated fibrosarcoma (BRAF) is a proto-oncogene that plays a vital role in cell signaling and growth regulation. Identifying a potent BRAF inhibitor can enhance therapeutic success in high-stage cancers, particularly metastatic melanoma. In this study, we proposed a stacking ensemble learning framework for the accurate prediction of BRAF inhibitors. We obtained 3857 curated molecules with BRAF inhibitory activity expressed as a predicted half-maximal inhibitory concentration value (pIC50) from the ChEMBL database. Twelve molecular fingerprints from PaDeL-Descriptor were calculated for model training. Three machine learning algorithms including extreme gradient boosting, support vector regression, and multilayer perceptron were utilized for constructing new predictive features (PFs). The meta-ensemble random forest regression, called StackBRAF, was created based on the 36 PFs. The StackBRAF model achieves lower mean absolute error (MAE) and higher coefficient of determination (R2 and Q2) than the individual baseline models. The stacking ensemble learning model provides good y-randomization results, indicating a strong correlation between molecular features and pIC50. An applicability domain of the model with an acceptable Tanimoto similarity score was also defined. Moreover, a large-scale high-throughput screening of 2123 FDA-approved drugs against the BRAF protein was successfully demonstrated using the StackBRAF algorithm. Thus, the StackBRAF model proved beneficial as a drug design algorithm for BRAF inhibitor drug discovery and drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...