Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 320(5881): 1329-31, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18535241

RESUMO

Atomic quantum gases in the strong-correlation regime offer unique possibilities to explore a variety of many-body quantum phenomena. Reaching this regime has usually required both strong elastic and weak inelastic interactions because the latter produce losses. We show that strong inelastic collisions can actually inhibit particle losses and drive a system into a strongly correlated regime. Studying the dynamics of ultracold molecules in an optical lattice confined to one dimension, we show that the particle loss rate is reduced by a factor of 10. Adding a lattice along the one dimension increases the reduction to a factor of 2000. Our results open the possibility to observe exotic quantum many-body phenomena with systems that suffer from strong inelastic collisions.

2.
Phys Rev Lett ; 99(3): 033201, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17678287

RESUMO

We observe large-amplitude Rabi oscillations between an atomic and a molecular state near a Feshbach resonance. The experiment uses 87Rb in an optical lattice and a Feshbach resonance near 414 G. The frequency and amplitude of the oscillations depend on the magnetic field in a way that is well described by a two-level model. The observed density dependence of the oscillation frequency agrees with theoretical expectations. We confirmed that the state produced after a half-cycle contains exactly one molecule at each lattice site. In addition, we show that, for energies in a gap of the lattice band structure, the molecules cannot dissociate.

3.
Phys Rev Lett ; 94(3): 033002, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15698259

RESUMO

The energy-level structure of a single atom strongly coupled to the mode of a high-finesse optical cavity is investigated. The atom is stored in an intracavity dipole trap and cavity cooling is used to compensate for inevitable heating. Two well-resolved normal modes are observed both in the cavity transmission and the trap lifetime. The experiment is in good agreement with a Monte Carlo simulation, demonstrating our ability to localize the atom to within lambda/10 at a cavity antinode.

4.
Nature ; 428(6978): 50-2, 2004 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-14999275

RESUMO

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction provides the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom-cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism results in extended storage times and improved localization of atoms. We estimate that the observed cooling rate is at least five times larger than that produced by free-space cooling methods, for comparable excitation of the atom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA