Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Res Protoc ; 11(1): e27935, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089146

RESUMO

BACKGROUND: Walking recovery post stroke can be slow and incomplete. Determining effective stroke rehabilitation frequency requires the assessment of neuroplasticity changes. Neurobiological signals from electroencephalogram (EEG) can measure neuroplasticity through incremental changes of these signals after rehabilitation. However, changes seen with a different frequency of rehabilitation require further investigation. It is hypothesized that the association between the incremental changes from EEG signals and the improved functional outcome measure scores are greater in higher rehabilitation frequency, implying enhanced neuroplasticity changes. OBJECTIVE: The purpose of this study is to identify the changes in the neurobiological signals from EEG, to associate these with functional outcome measures scores, and to compare their associations in different therapy frequency for gait rehabilitation among subacute stroke individuals. METHODS: A randomized, single-blinded, controlled study among patients with subacute stroke will be conducted with two groups: an intervention group (IG) and a control group (CG). Each participant in the IG and CG will receive therapy sessions three times a week (high frequency) and once a week (low frequency), respectively, for a total of 12 consecutive weeks. Each session will last for an hour with strengthening, balance, and gait training. The main variables to be assessed are the 6-Minute Walk Test (6MWT), Motor Assessment Scale (MAS), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and quantitative EEG indices in the form of delta to alpha ratio (DAR) and delta-plus-theta to alpha-plus-beta ratio (DTABR). These will be measured at preintervention (R0) and postintervention (R1). Key analyses are to determine the changes in the 6MWT, MAS, BBS, MBI, DAR, and DTABR at R0 and R1 for the CG and IG. The changes in the DAR and DTABR will be analyzed for association with the changes in the 6MWT, MAS, BBS, and MBI to measure neuroplasticity changes for both the CG and IG. RESULTS: We have recruited 18 participants so far. We expect to publish our results in early 2023. CONCLUSIONS: These associations are expected to be positive in both groups, with a higher correlation in the IG compared to the CG, reflecting enhanced neuroplasticity changes and objective evaluation on the dose-response relationship. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/27935.

2.
J Multidiscip Healthc ; 14: 2391-2396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511922

RESUMO

PURPOSE: To collectively identify the clinical characteristics determining the risk of developing spasticity after stroke. PATIENTS AND METHODS: A cross-sectional study was conducted at a single rehabilitation outpatient clinic from June to December 2019. Inclusion criteria were stroke duration of over four weeks, aged 18 years and above. Exclusion criteria were presence of concurrent conditions other than stroke that could also lead to spasticity. Recruited patients were divided into "Spasticity" and "No spasticity" groups. Univariate analysis was deployed to identify significant predictive spasticity factors between the two groups followed by a two-step clustering approach for determining group of characteristics that collectively contributes to the risk of developing spasticity in the "Spasticity" group. RESULTS: A total of 216 post-stroke participants were recruited. The duration after stroke (p < 0.001) and the absence of hemisensory loss (p = 0.042) were two significant factors in the "Spasticity" group revealed by the univariate analysis. From a total of 98 participants with spasticity, the largest cluster of individuals (40 patients, 40.8%) was those within less than 20 months after stroke with moderate stroke and absence of hemisensory loss, while the smallest cluster was those within less than 20 months after severe stroke and absence of hemisensory loss (21 patients, 21.4%). CONCLUSION: Analyzing collectively the significant factors of developing spasticity may have the potential to be more clinically relevant in a heterogeneous post-stroke population that may assist in the spasticity management and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...