Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 12(19): 1389-1403, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32975433

RESUMO

Background: Antibody biotherapeutic measurement from pharmacokinetic studies has not been traditionally based on intact molecular mass as is the case for small molecules. However, recent advancements in protein capture and mass spectrometer technology have enabled intact mass detection and quantitation for dosed biotherapeutics. A bioanalytical method validation is part of the regulatory requirement for sample analysis to determine drug concentration from in-life study samples. Results/methodology: Here, an intact protein LC-MS assay is subjected to mock bioanalytical method validation, and unknown samples are compared between intact protein LC-MS and established bioanalytical assay formats: Ligand-binding assay and peptide LC-MS/MS. Discussion/conclusion: Results are presented from the intact and traditional bioanalytical method evaluations, where the in-life sample concentrations were comparable across method types with associated data analyses presented. Furthermore, for intact protein LC-MS, modification monitoring and evaluation of data processing parameters is demonstrated.


Assuntos
Anticorpos Monoclonais/farmacocinética , Terapia Biológica/métodos , Cromatografia Líquida/métodos , Preparações Farmacêuticas/análise , Espectrometria de Massas em Tandem/métodos , Humanos
2.
Anal Chem ; 92(12): 8268-8277, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32392410

RESUMO

Complex biotherapeutics present challenges from drug discovery, screening, and development perspectives. While monoclonal antibody drugs are not monitored for metabolites in the same manner as small molecules, biotherapeutics such as fusion proteins, antibody-drug conjugates, or bispecific antibodies may undergo biotransformation (such as clipping, deamidation, or oxidation) in vivo, resulting in catabolites that can have a direct impact on drug safety or efficacy. Here antibody subunit LC-MS is utilized for evaluation of two classes of complex biotherapeutics: an antibody-drug conjugate and a mAb-fusion biotherapeutic. Pharmacokinetic concentration, biotransformation, and DAR data are collectively presented using the subunit LC-MS approach for the two molecules, and the methods shared in detail can be applied to any humanized IgG1 mAb biotherapeutic for preclinical study support. Overall, the data generated from antibody LC-MS analyses can provide key information in early phase development and deliver multiple study end points with a single data set.


Assuntos
Anticorpos Monoclonais/análise , Imunoconjugados/análise , Animais , Anticorpos Monoclonais/farmacocinética , Biotransformação , Cromatografia Líquida , Imunoconjugados/farmacocinética , Macaca mulatta , Espectrometria de Massas , Ratos
3.
J Pharmacol Exp Ther ; 366(1): 37-45, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653960

RESUMO

Atovaquone, an antiprotozoal and antipneumocystic agent, is predominantly cleared by biliary excretion of unchanged parent drug. Atovaquone is ≥10,000-fold concentrated in human bile relative to unbound plasma. Even after correcting for apparent nonspecific binding and incomplete solubility in bile, atovaquone is still concentrated ≥100-fold in bile, consistent with active biliary excretion. Mechanisms of atovaquone hepatobiliary disposition were studied using a multiexperimental in vitro and in vivo approach. Atovaquone uptake was not elevated in HEK293 cells singly overexpressing OATP1B1, OATP1B3, OATP2B1, OCT1, NTCP, or OAT2. Hepatocyte uptake of atovaquone was not impaired by OATP and OCT inhibitor cocktail (rifamycin and imipramine). Atovaquone liver-to-blood ratio at distributional equilibrium was not reduced in Oatp1a/1b and Oct1/2 knockout mice. Atovaquone exhibited efflux ratios of approximately unity in P-gp and BCRP overexpressing MDCK cell monolayers and did not display enhanced uptake in MRP2 vesicles. Biliary and canalicular clearance were not decreased in P-gp, Bcrp, Mrp2, and Bsep knockout rats. In the present study, we rule out the involvement of major known basolateral uptake and bile canalicular efflux transporters in the hepatic uptake and biliary excretion of atovaquone. This is the first known example of a drug cleared by biliary excretion in humans, with extensive biliary concentration, which is not transported by the mechanisms investigated herein.


Assuntos
Atovaquona/farmacocinética , Sistema Biliar/metabolismo , Fígado/metabolismo , Animais , Atovaquona/química , Atovaquona/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Ratos , Ratos Sprague-Dawley , Solubilidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...