Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766166

RESUMO

Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human ß cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced ß cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of ß cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D ( RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented ß cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for ß cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.

2.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562689

RESUMO

We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with ß cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in ß cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1ß, IFNγ, and TNFα) to model T1D in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote ß cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.

3.
Polymers (Basel) ; 16(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611266

RESUMO

Understanding and characterizing semi-crystalline models with crystalline and amorphous segments is crucial for industrial applications. A coarse-grained molecular dynamics (CGMD) simulations study probed the crystal network formation in high-density polyethylene (HDPE) from melt, and shed light on tensile properties for microstructure analysis. Modified Paul-Yoon-Smith (PYS/R) forcefield parameters are used to compute the interatomic forces among the PE chains. The isothermal crystallization at 300 K and 1 atm predicts the multi-nucleus crystal growth; moreover, the lamellar crystal stems and amorphous region are alternatively oriented. A one-dimensional density distribution along the alternative lamellar stems further confirms the ordering of the lamellar-stack orientation. Using this plastic model preparation approach, the semi-crystalline model density (ρcr) of ca. 0.913 g·cm-3 and amorphous model density (ρam) of ca. 0.856 g·cm-3 are obtained. Furthermore, the ratio of ρcr/ρam ≈ 1.06 is in good agreement with computational (≈1.096) and experimental (≈1.14) data, ensuring the reliability of the simulations. The degree of crystallinity (χc) of the model is ca. 52% at 300 K. Nevertheless, there is a gradual increase in crystallinity over the specified time, indicating the alignment of the lamellar stems during crystallization. The characteristic stress-strain curve mimicking tensile tests along the z-axis orientation exhibits a reversible sharp elastic regime, tensile strength at yield ca. 100 MPa, and a non-reversible tensile strength at break of 350%. The cavitation mechanism embraces the alignment of lamellar stems along the deformation axis. The study highlights an explanatory model of crystal network formation for the PE model using a PYS/R forcefield, and it produces a microstructure with ordered lamellar and amorphous segments with robust mechanical properties, which aids in predicting the microstructure-mechanical property relationships in plastics under applied forces.

4.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383396

RESUMO

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Assuntos
Ácidos Graxos Ômega-3 , Ilhotas Pancreáticas , N-Glicosil Hidrolases , Camundongos , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Morte Celular , Citocinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Fosfatidilcolinas/metabolismo
5.
ACS Omega ; 9(2): 2770-2782, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250433

RESUMO

Herein, we report a solvent-less, straightforward, and facile mechanochemical technique to synthesize nanocomposites of Ag2O nanoparticles-doped MnO2, which is further codoped with nitrogen-doped graphene (N-DG) [i.e., (X %)N-DG/MnO2-(1% Ag2O)] using physical milling of separately prepared N-DG and Ag2O NPs-MnO2 annealed at 400 °C over an eco-friendly ball-mill process. To assess the efficiency in terms of catalytic performance of the nanocomposites, selective oxidation of benzyl alcohol (BlOH) to benzaldehyde (BlCHO) is selected as a substrate model with an eco-friendly oxidizing agent (O2 molecule) and without any requirements for the addition of any harmful additives or bases. Various nanocomposites were prepared by varying the amount of N-DG in the composite, and the results obtained highlighted the function of N-DG in the catalyst system when they are compared with the catalyst MnO2-(1% Ag2O) [i.e., undoped catalyst] and MnO2-(1% Ag2O) codoped with different graphene dopants such as GRO and H-RG for alcohol oxidation transformation. The effects of various catalytic factors are systematically evaluated to optimize reaction conditions. The N-DG/MnO2-(1% Ag2O) catalyst exhibits premium specific activity (16.0 mmol/h/g) with 100% BlOH conversion and <99.9% BlCHO selectivity within a very short interval. The mechanochemically prepared N-DG-based nanocomposite displayed higher catalytic efficacy than that of the MnO2-(1% Ag2O) catalyst without the graphene dopant, which is N-DG in this study. A wide array of aromatic, heterocyclic, allylic, primary, secondary, and aliphatic alcohols have been selectively converted to respective ketones and aldehydes with full convertibility without further oxidation to acids over N-DG/MnO2-(1% Ag2O). Interestingly, it is also found that the N-DG/MnO2-(1% Ag2O) can be efficiently reused up to six times without a noteworthy decline in its effectiveness. The prepared nanocomposites were characterized using various analytical, microscopic, and spectroscopic techniques such as X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman, field emission scanning electron microscopy, and Brunauer-Emmett-Teller.

6.
Polymers (Basel) ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276712

RESUMO

Mechanical recycling is the most efficient way to reduce plastic pollution due to its ability to maintain the intrinsic properties of plastics as well as provide economic benefits involved in other types of recycling. On the other hand, molecular dynamics (MD) simulations provide key insights into structural deformation, lamellar crystalline axis (c-axis) orientations, and reorganization, which are essential for understanding plastic behavior during structural deformations. To simulate the influence of structural deformations in high-density polyethylene (HDPE) during mechanical recycling while paying attention to obtaining an alternate lamellar orientation, the authors examine a specific way of preparing stacked lamella-oriented HDPE united atom (UA) models, starting from a single 1000 UA (C1000) chain of crystalline conformations and then packing such chain conformations into 2-chain, 10-chain, 15-chain, and 20-chain semi-crystalline models. The 2-chain, 10-chain, and 15-chain models yielded HDPE microstructures with the desired alternating lamellar orientations and entangled amorphous segments. On the other hand, the 20-chain model displayed multi-nucleus crystal growth instead of the lamellar-stack orientation. Structural characterization using a one-dimensional density profile and local order parameter {P2(r)} analyses demonstrated lamellar-stack orientation formation. All semi-crystalline models displayed the total density (ρ) and degree of crystallinity (χ) range of 0.90-0.94 g/cm-3 and ≥42-45%, respectively. A notable stress yield (σ_yield) ≈ 100-120 MPa and a superior elongation at break (ε_break) ~250% was observed under uniaxial strain deformation along the lamellar-stack orientation. Similarly, during the MD simulations, the microstructure phase change represented the average number of entanglements per chain (). From the present study, it can be recommended that the 10-chain alternate lamellar-stack orientation model is the most reliable miniature model for HDPE that can mimic industrially relevant plastic behavior in various conditions.

7.
Dalton Trans ; 53(7): 3132-3142, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38236139

RESUMO

Vanadium oxides are promising oxidation catalysts because of their rich redox chemistry. We report the synthesis of VO2 nanocrystals with VO2(B) crystal structure. By varying the mixing ratio of the components of a binary ethanol/water mixture, different VO2 nanocrystal morphologies (nanorods, -urchins, and -sheets) could be made selectively in pure form. Polydisperse VO2(B) nanorods with lengths between 150 nm and a few micrometers were formed at large water : ethanol ratios between 4 : 1 and 3 : 2. At a water : ethanol ratio of 1 : 9 VO2 nanosheets with diameters of ∼50-70 nm were formed, which aggregated to nano-urchins with diameters of ∼200 nm in pure ethanol. The catalytic activity of VO2 nanocrystals for the oxidation of alcohols was studied as a function of nanocrystal morphology. VO2 nanocrystals with all morphologies were catalytically active. The activity for the oxidation of benzyl alcohol to benzaldehyde was about 30% higher than that for the oxidation of furfuryl alcohol to furfural. This is due to the substrate structure. The oxidation activity of VO2 nanostructures decreases in the order of nanourchins > nanosheets > nanorods.

8.
medRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076918

RESUMO

Aim/hypothesis: Growth/differentiation factor 15 (GDF15) is a therapeutic target for a variety of metabolic diseases, including type 1 diabetes (T1D). However, the nausea caused by GDF15 is a challenging point for therapeutic development. In addition, it is unknown why the endogenous GDF15 fails to protect from T1D development. Here, we investigate the GDF15 signaling in pancreatic islets towards opening possibilities for therapeutic targeting in ß cells and to understand why this protection fails to occur naturally. Methods: GDF15 signaling in islets was determined by proximity-ligation assay, untargeted proteomics, pathway analysis, and treatment of cells with specific inhibitors. To determine if GDF15 levels would increase prior to disease onset, plasma levels of GDF15 were measured in a longitudinal prospective study of children during T1D development (n=132 cases vs. n=40 controls) and in children with islet autoimmunity but normoglycemia (n=47 cases vs. n=40 controls) using targeted mass spectrometry. We also investigated the regulation of GDF15 production in islets by fluorescence microscopy and western blot analysis. Results: The proximity-ligation assay identified ERBB2 as the GDF15 receptor in islets, which was confirmed using its specific antagonist, tucatinib. The untargeted proteomics analysis and caspase assay showed that ERBB2 activation by GDF15 reduces ß cell apoptosis by downregulating caspase 8. In plasma, GDF15 levels were higher (p=0.0024) during T1D development compared to controls, but not in islet autoimmunity with normoglycemia. However, in the pancreatic islets GDF15 was depleted via sequestration of its mRNA into stress granules, resulting in translation halting. Conclusions/interpretation: GDF15 protects against T1D via ERBB2-mediated decrease of caspase 8 expression in pancreatic islets. Circulating levels of GDF15 increases pre-T1D onset, which is insufficient to promote protection due to its localized depletion in the islets. These findings open opportunities for targeting GDF15 downstream signaling for pancreatic ß cell protection in T1D and help to explain the lack of natural protection by the endogenous protein.

9.
Molecules ; 28(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138469

RESUMO

This work reports the influence of antimony substitution in a cerium molybdate lattice for improved dielectric and photocatalytic properties. For this purpose, a series of Ce2-xSbx(MoO4)3 (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) were synthesized through a co-precipitation route. The as-synthesized materials were characterized for their optical properties, functional groups, chemical oxidation states, structural phases, surface properties, and dielectric characteristics using UV-Vis spectroscopy (UV-Vis), Fourier transform infrared (FTIR) and Raman spectroscopies, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and impedance spectroscopy, respectively. UV-Vis study showed a prominent red shift of absorption maxima and a continuous decrease in band gap (3.35 eV to 2.79 eV) by increasing the dopant concentration. The presence of Ce-O and Mo-O-Mo bonds, detected via FTIR and Raman spectroscopies, are confirmed, indicating the successful synthesis of the desired material. The monoclinic phase was dominant in all materials, and the crystallite size was decreased from 40.29 nm to 29.09 nm by increasing the Sb content. A significant increase in the dielectric constant (ε' = 2.856 × 108, 20 Hz) and a decrease in the loss tan (tanδ = 1.647, 20 Hz) were exhibited as functions of the increasing Sb concentration. Furthermore, the photocatalytic efficiency of pristine cerium molybdate was also increased by 1.24 times against diclofenac potassium by incorporating Sb (x = 0.09) in the cerium molybdate. The photocatalytic efficiency of 85.8% was achieved within 180 min of UV light exposure at optimized conditions. The photocatalytic reaction followed pseudo-first-order kinetics with an apparent rate constant of 0.0105 min-1, and the photocatalyst was recyclable with good photocatalytic activity even after five successive runs. Overall, the as-synthesized Sb-doped cerium molybdate material has proven to be a promising candidate for charge storage devices and a sustainable photocatalyst for wastewater treatment.

10.
Compr Physiol ; 14(1): 5243-5267, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158370

RESUMO

Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic ß cell. However, genetic and physiologic data indicate that defects in ß cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the ß cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the ß cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Retículo Endoplasmático/metabolismo
11.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106138

RESUMO

Histone deacetylase inhibitors (HDIs) modulate ß cell function in preclinical models of diabetes; however, the mechanisms underlying these beneficial effects have not been determined. In this study, we investigated the impact of the HDI sodium butyrate (NaB) on ß cell function and calcium (Ca2+) signaling using ex vivo and in vitro models of diabetes. Our results show that NaB significantly improved glucose-stimulated insulin secretion in islets from human organ donors with type 2 diabetes and in cytokine-treated INS-1 ß cells. Consistently, NaB partially rescued glucose-stimulated Ca2+ oscillations in mouse islets treated with proinflammatory cytokines. Because the oscillatory phenotype of Ca2+ in the ß cell is governed by changes in endoplasmic reticulum (ER) Ca2+ levels, next we explored the relationship between NaB and store-operated calcium entry (SOCE), a rescue mechanism that acts to refill ER Ca2+ levels through STIM1-mediated gating of plasmalemmal Orai channels. We found that NaB treatment preserved basal ER Ca2+ levels and restored SOCE in IL-1ß-treated INS-1 cells. Furthermore, we linked these changes with the restoration of STIM1 levels in cytokine-treated INS-1 cells and mouse islets, and we found that NaB treatment was sufficient to prevent ß cell death in response to IL-1ß treatment. Mechanistically, NaB counteracted cytokine-mediated reductions in phosphorylation levels of key signaling molecules, including AKT, ERK1/2, glycogen synthase kinase-3α (GSK-3α), and GSK-3ß. Taken together, these data support a model whereby HDI treatment promotes ß cell function and Ca2+ homeostasis under proinflammatory conditions through STIM1-mediated control of SOCE and AKT-mediated inhibition of GSK-3.

12.
Front Immunol ; 14: 1278184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954612

RESUMO

Oral administration of antigen induces regulatory T cells (Treg) that can not only control local immune responses in the small intestine, but also traffic to the central immune system to deliver systemic suppression. Employing murine models of the inherited bleeding disorder hemophilia, we find that oral antigen administration induces three CD4+ Treg subsets, namely FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+. These T cells act in concert to suppress systemic antibody production induced by therapeutic protein administration. Whilst both FoxP3+LAP+ and FoxP3-LAP+ CD4+ T cells express membrane-bound TGF-ß (latency associated peptide, LAP), phenotypic, functional, and single cell transcriptomic analyses reveal distinct characteristics in the two subsets. As judged by an increase in IL-2Rα and TCR signaling, elevated expression of co-inhibitory receptor molecules and upregulation of the TGFß and IL-10 signaling pathways, FoxP3+LAP+ cells are an activated form of FoxP3+LAP- Treg. Whereas FoxP3-LAP+ cells express low levels of genes involved in TCR signaling or co-stimulation, engagement of the AP-1 complex members Jun/Fos and Atf3 is most prominent, consistent with potent IL-10 production. Single cell transcriptomic analysis further reveals that engagement of the Jun/Fos transcription factors is requisite for mediating TGFß expression. This can occur via an Il2ra dependent or independent process in FoxP3+LAP+ or FoxP3-LAP+ cells respectively. Surprisingly, both FoxP3+LAP+ and FoxP3-LAP+ cells potently suppress and induce FoxP3 expression in CD4+ conventional T cells. In this process, FoxP3-LAP+ cells may themselves convert to FoxP3+ Treg. We conclude that orally induced suppression is dependent on multiple regulatory cell types with complementary and interconnected roles.


Assuntos
Interleucina-10 , Linfócitos T Reguladores , Camundongos , Animais , Interleucina-10/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
13.
Materials (Basel) ; 16(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37763616

RESUMO

Semiconducting nanomaterials based heterogeneous photocatalysis represent a low-cost, versatile technique for environmental remediation, including pollution mitigation, energy management and other environmental aspects. Herein, we demonstrate the syntheses of various heterogeneous photocatalysts based on highly reduced graphene oxide (HRG) and vanadium oxide (VOx)-based nanocomposites (HRG-VOx). Different shapes (rod, sheet and urchin forms) of VOx nanoparticles were successfully fabricated on the surface of HRG under solvo-/hydrothermal conditions by varying the amount of water and ethanol. The high concentration of water in the mixture resulted in the formation of rod-shaped VOx nanoparticles, whereas increasing the amount of ethanol led to the production of VOx sheets. The solvothermal condition using pure ethanol as solvent produced VOx nano-urchins on the surface of HRG. The as-prepared hybrid materials were characterized using various spectroscopic and microscopic techniques, including X-ray diffraction, UV-vis, FTIR, SEM and TEM analyses. The photocatalytic activities of different HRG-VOx nanocomposites were investigated for the photodegradation of methylene blue (MB) and methyl orange (MO). The experimental data revealed that all HRG-VOx composite-based photocatalysts demonstrated excellent performance toward the photocatalytic degradation of the organic dyes. Among all photocatalysts studied, the HRG-VOx nanocomposite consisting of urchin-shaped VOx nanoparticles (HRG-VOx-U) demonstrated superior photocatalytic properties towards the degradation of dyes.

14.
PeerJ Comput Sci ; 9: e1517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705657

RESUMO

Election prediction using sentiment analysis is a rapidly growing field that utilizes natural language processing and machine learning techniques to predict the outcome of political elections by analyzing the sentiment of online conversations and news articles. Sentiment analysis, or opinion mining, involves using text analysis to identify and extract subjective information from text data sources. In the context of election prediction, sentiment analysis can be used to gauge public opinion and predict the likely winner of an election. Significant progress has been made in election prediction in the last two decades. Yet, it becomes easier to have its comprehensive view if it has been appropriately classified approach-wise, citation-wise, and technology-wise. The main objective of this article is to examine and consolidate the progress made in research about election prediction using Twitter data. The aim is to provide a comprehensive overview of the current state-of-the-art practices in this field while identifying potential avenues for further research and exploration.

15.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398133

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in modulating gene expression and are enriched in cell-derived extracellular vesicles (EVs). We investigated whether miRNAs from human islets and islet-derived EVs could provide insight into ß cell stress pathways activated during type 1 diabetes (T1D) evolution, therefore serving as potential disease biomarkers. We treated human islets from 10 cadaveric donors with IL-1ß and IFN-γ to model T1D ex vivo. MicroRNAs were isolated from islets and islet-derived EVs, and small RNA sequencing was performed. We found 20 and 14 differentially expressed (DE) miRNAs in cytokine- versus control-treated islets and EVs, respectively. Interestingly, the miRNAs found in EVs were mostly different from those found in islets. Only two miRNAs, miR-155-5p and miR-146a-5p, were upregulated in both islets and EVs, suggesting selective sorting of miRNAs into EVs. We used machine learning algorithms to rank DE EV-associated miRNAs, and developed custom label-free Localized Surface Plasmon Resonance-based biosensors to measure top ranked EVs in human plasma. Results from this analysis revealed that miR-155, miR-146, miR-30c, and miR-802 were upregulated and miR-124-3p was downregulated in plasma-derived EVs from children with recent-onset T1D. In addition, miR-146 and miR-30c were upregulated in plasma-derived EVs of autoantibody positive (AAb+) children compared to matched non-diabetic controls, while miR-124 was downregulated in both T1D and AAb+ groups. Furthermore, single-molecule fluorescence in situ hybridization confirmed increased expression of the most highly upregulated islet miRNA, miR-155, in pancreatic sections from organ donors with AAb+ and T1D.

16.
Nat Commun ; 14(1): 4140, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468493

RESUMO

Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.


Assuntos
Cálculos Renais , Medula Renal , Humanos , Medula Renal/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 7 da Matriz , Oxalato de Cálcio/metabolismo , Transcriptoma , Cálculos Renais/genética , Cálculos Renais/metabolismo
17.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298090

RESUMO

Recent studies in nanomedicine have intensively explored the prospective applications of surface-tailored graphene oxide (GO) as anticancer entity. However, the efficacy of nonfunctionalized graphene oxide nanolayers (GRO-NLs) as an anticancer agent is less explored. In this study, we report the synthesis of GRO-NLs and their in vitro anticancer potential in breast (MCF-7), colon (HT-29), and cervical (HeLa) cancer cells. GRO-NLs-treated HT-29, HeLa, and MCF-7 cells showed cytotoxicity in the MTT and NRU assays via defects in mitochondrial functions and lysosomal activity. HT-29, HeLa, and MCF-7 cells treated with GRO-NLs exhibited substantial elevations in ROS, disturbances of the mitochondrial membrane potential, an influx of Ca2+, and apoptosis. The qPCR quantification showed the upregulation of caspase 3, caspase 9, bax, and SOD1 genes in GRO-NLs-treated cells. Western blotting showed the depletion of P21, P53, and CDC25C proteins in the above cancer cell lines after GRO-NLs treatment, indicating its function as a mutagen to induce mutation in the P53 gene, thereby affecting P53 protein and downstream effectors P21 and CDC25C. In addition, there may be a mechanism other than P53 mutation that controls P53 dysfunction. We conclude that nonfunctionalized GRO-NLs exhibit prospective biomedical application as a putative anticancer entity against colon, cervical, and breast cancers.


Assuntos
Neoplasias da Mama , Proteína Supressora de Tumor p53 , Humanos , Feminino , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Nanomedicina , Apoptose , Células MCF-7 , Colo/metabolismo
18.
Front Bioeng Biotechnol ; 11: 1149588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025362

RESUMO

Background: Bacterial infections and cancers may cause various acute or chronic diseases, which have become serious global health issues. This requires suitable alternatives involving novel and efficient materials to replace ineffective existing therapies. In this regard, graphene composites are being continuously explored for a variety of purposes, including biomedical applications, due to their remarkable properties. Methods: Herein, we explore, in-vitro, the different biological properties of highly reduced graphene oxide (HRG), including anti-cancer, anti-bacterial, and anti-biofilm properties. Furthermore, to analyze the interactions of graphene with proteins of microbes, in silico docking analysis was also carried out. To do this, HRG was prepared using graphene oxide as a precursor, which was further chemically reduced to obtain the final product. The as-prepared HRG was characterized using different types of microscopic and spectroscopic techniques. Results: The HRG revealed significant cytotoxic ability, using a dose-dependent anti-cell proliferation approach, which substantially killed human breast cancer cells (MCF-7) with IC50 of 29.51 ± 2.68 µg/mL. The HRG demonstrated efficient biological properties, i.e., even at low concentrations, HRG exhibited efficient anti-microbial properties against a variety of microorganisms. Among the different strains, Gram-positive bacteria, such as B. subtilis, MRSA, and S. aureus are more sensitive to HRG compared to Gram-negative bacteria. The bactericidal properties of HRG are almost similar to a commercially available effective antibiotic (ampicillin). To evaluate the efficacy of HRG against bacterial biofilms, Pseudomonas aeruginosa and MRSA were applied, and the results were compared with gentamycin and ampicillin, which are commonly applied standard antibiotics. Notably, HRG demonstrated high inhibition (94.23%) against P.aeruginosa, with lower MIC (50 µg/mL) and IC50 (26.53 µg/mL) values, whereas ampicillin and gentamicin showed similar inhibition (90.45% and 91.31% respectively) but much higher MIC and IC50 values. Conclusion: Therefore, these results reveal the excellent biopotential of HRG in different biomedical applications, including cancer therapy; antimicrobial activity, especially anti-biofilm activity; and other biomedicine-based therapies. Based on the molecular docking results of Binding energy, it is predicted that pelB protein and HRG would form the best stable docking complex, and high hydrogen and hydrophobic interactions between the pelB protein and HRG have been revealed. Therefore, we conclude that HRG could be used as an antibiofilm agent against P. aeruginosa infections.

19.
Plants (Basel) ; 12(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771651

RESUMO

Seeds and fruits of Citrullus colocynthis have been reported to possess huge potential for the development of phytopharmaceuticals with a wide range of biological activities. Thus, in the current study, we are reporting the potential antimicrobial and anticancer properties of C. colocynthis seeds extracted with solvents of different polarities, including methanol (M.E.), hexane (H.E.), and chloroform (C.E.). Antimicrobial properties of C. colocynthis seeds extracts were evaluated on Gram-positive and Gram-negative bacteria, whereas, anticancer properties were tested on four different cell lines, including HepG2, DU145, Hela, and A549. All the extracts have demonstrated noteworthy antimicrobial activities with a minimum inhibitory concentration (MIC) ranging from 0.9-62.5 µg/mL against Klebsiella planticola and Staphylococcus aureus; meanwhile, they were found to be moderately active (MIC 62.5-250 µg/mL) against Escherichia coli and Micrococcus luteus strains. Hexane extracts have demonstrated the highest antimicrobial activity against K. planticola with an MIC value of 0.9 µg/mL, equivalent to that of the standard drug ciprofloxacin used as positive control in this study. For anticancer activity, all the extracts of C. colocynthis seeds were found to be active against all the tested cell lines (IC50 48.49-197.96 µg/mL) except for the chloroform extracts, which were found to be inactive against the HepG2 cell line. The hexane extract was found to possess the most prominent anticancer activity when compared to other extracts and has demonstrated the highest anticancer activity against the DU145 cell line with an IC50 value of 48.49 µg/mL. Furthermore, a detailed phytoconstituents analysis of all the extracts of C. colocynthis seeds were performed using GC-MS and GC-FID techniques. Altogether, 43 phytoconstituents were identified from the extracts of C. colocynthis seeds, among which 21, 12, and 16 components were identified from the H.E., C.E., and M.E. extracts, respectively. Monoterpenes (40.4%) and oxygenated monoterpenes (41.1%) were the most dominating chemical class of compounds from the hexane and chloroform extracts, respectively; whereas, in the methanolic extract, oxygenated aliphatic hydrocarbons (77.2%) were found to be the most dominating chemical class of compounds. To the best of our knowledge, all the phytoconstituents identified in this study are being reported for the first time from the C. colocynthis.

20.
J Am Soc Nephrol ; 34(2): 220-240, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283811

RESUMO

BACKGROUND: Translation shutdown is a hallmark of late-phase, sepsis-induced kidney injury. Methods for controlling protein synthesis in the kidney are limited. Reversing translation shutdown requires dephosphorylation of the eukaryotic initiation factor 2 (eIF2) subunit eIF2 α ; this is mediated by a key regulatory molecule, protein phosphatase 1 regulatory subunit 15A (Ppp1r15a), also known as GADD34. METHODS: To study protein synthesis in the kidney in a murine endotoxemia model and investigate the feasibility of translation control in vivo by boosting the protein expression of Ppp1r15a, we combined multiple tools, including ribosome profiling (Ribo-seq), proteomics, polyribosome profiling, and antisense oligonucleotides, and a newly generated Ppp1r15a knock-in mouse model and multiple mutant cell lines. RESULTS: We report that translation shutdown in established sepsis-induced kidney injury is brought about by excessive eIF2 α phosphorylation and sustained by blunted expression of the counter-regulatory phosphatase Ppp1r15a. We determined the blunted Ppp1r15a expression persists because of the presence of an upstream open reading frame (uORF). Overcoming this barrier with genetic and antisense oligonucleotide approaches enabled the overexpression of Ppp1r15a, which salvaged translation and improved kidney function in an endotoxemia model. Loss of this uORF also had broad effects on the composition and phosphorylation status of the immunopeptidome-peptides associated with the MHC-that extended beyond the eIF2 α axis. CONCLUSIONS: We found Ppp1r15a is translationally repressed during late-phase sepsis because of the existence of an uORF, which is a prime therapeutic candidate for this strategic rescue of translation in late-phase sepsis. The ability to accurately control translation dynamics during sepsis may offer new paths for the development of therapies at codon-level precision. PODCAST: This article contains a podcast at.


Assuntos
Injúria Renal Aguda , Endotoxemia , Animais , Camundongos , Biossíntese de Proteínas , Fases de Leitura Aberta , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Endotoxemia/complicações , Modelos Animais de Doenças , Injúria Renal Aguda/genética , Proteína Fosfatase 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...