Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Oncol (R Coll Radiol) ; 28(10): 655-62, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27266819

RESUMO

AIMS: To investigate the use of image co-registration in incorporating diagnostic positron emission tomography-computed tomography (PET-CT) directly into the radiotherapy treatment planning pathway, and to describe the pattern of local recurrence relative to the PET-avid volume. MATERIALS AND METHODS: Fourteen patients were retrospectively identified, six of whom had local recurrence. The accuracy of deformable image registration (DIR) and rigid registration of the diagnostic PET-CT and recurrence CT, to the planning CT, were quantitatively assessed by comparing co-registration of oesophagus, trachea and aorta contours. DIR was used to examine the correlation between PET-avid volumes, dosimetry and site of recurrence. RESULTS: Positional metrics including the dice similarity coefficient (DSC) and conformity index (CI), showed DIR to be superior to rigid registration in the co-registration of diagnostic and recurrence imaging to the planning CT. For diagnostic PET-CT, DIR was superior to rigid registration in the transfer of oesophagus (DSC=0.75 versus 0.65, P<0.009 and CI=0.59 versus 0.48, P<0.003), trachea (DSC=0.88 versus 0.65, P<0.004 and CI=0.78 versus 0.51, P<0.0001) and aorta structures (DSC=0.93 versus 0.86, P<0.006 and CI=0.86 versus 0.76, P<0.006). For recurrence imaging, DIR was superior to rigid registration in the transfer of trachea (DSC=0.91 versus 0.66, P<0.03 and CI=0.83 versus 0.51, P<0.02) and oesophagus structures (DSC=0.74 versus 0.51, P<0.004 and CI=0.61 versus 0.37, P<0.006) with a non-significant trend for the aorta (DSC=0.91 versus 0.75, P<0.08 and CI=0.83 versus 0.63, P<0.06) structure. A mean inclusivity index of 0.93 (range 0.79-1) showed that the relapse volume was within the planning target volume (PTVPET-CT); all relapses occurred within the high dose region. CONCLUSION: DIR is superior to rigid registration in the co-registration of PET-CT and recurrence CT to the planning CT, and can be considered in the direct integration of PET-CT to the treatment planning process. Local recurrences occur within the PTVPET-CT, suggesting that this is a suitable target for dose-escalation strategies.


Assuntos
Neoplasias Esofágicas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Neoplasias Esofágicas/radioterapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria/métodos , Estudos Retrospectivos
2.
Med Phys ; 41(2): 021708, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24506599

RESUMO

PURPOSE: Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devised and tested, based on fitting a second order polynomial to the profiles of physically wedged beams, where the metric of interest is the second order coefficient α. The relationship between α and the beam quality index [percentage depth dose at 10 cm depth (PDD10)] is examined to produce a suitable calibration curve between these two parameters. METHODS: Measurements were taken in a water-tank for beams with a range of energies representative of the local QA tolerances about the nominal value 6 MV. In each case, the beam quality was found in terms of PDD10 for 100 × 100 mm(2) square fields. EPID images of 200 × 200 mm(2) wedged fields were then taken for each beam and the wedge profile was fitted in MATLAB 2010b (The MathWorks, Inc., Natick, MA). α was then plotted against PDD10 and fitted with a linear relation to produce the calibration curve. The uncertainty in α was evaluated by taking five repeat EPID images of the wedged field for a beam of 6 MV nominal energy. The consistency of measuring α was found by taking repeat measurements on a single linac over a three month period. The method was also tested at 10 MV by repeating the water-tank crosscalibration for a range of energies centered approximately about a 10 MV nominal value. Finally, the calibration curve from the test linac and that from a separate clinical machine were compared to test consistency of the method across machines in a matched fleet. RESULTS: The relationship between α and PDD10 was found to be strongly linear (R(2) = 0.979) while the uncertainty in α was found to be negligible compared to that associated with measuring PDD10 in the water-tank (± 0.3%). The repeat measurements over a three month period showed the method to be reasonably consistent (i.e., well within the limits defined by local QA tolerances). The measurements were repeated on a matched machine and the same linear relationship between α and PDD10 was observed. The results for both machines were found to be indistinguishable across the energy range of interest (i.e., across and close to the thresholds defined by local QA tolerances), hence a single relation could be established across a matched fleet. Finally, the experiment was repeated on both linacs at 10 MV, where the linear relationship between α and PDD10 was again observed. CONCLUSIONS: The authors conclude that EPID image analysis of physically wedged beam profiles can be used to measure linac photon beam energy. The uncertainty in such a measurement is dominated by that associated with measuring PDD10 in the water-tank; hence, the accuracies of these two methods are directly comparable. This method provides a useful technique for quickly performing energy constancy measurements while saving significant clinical downtime for QA.


Assuntos
Equipamentos e Provisões Elétricas , Aceleradores de Partículas/instrumentação , Fótons/uso terapêutico , Calibragem , Controle de Qualidade
3.
Br J Radiol ; 85(1009): 61-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22190750

RESUMO

OBJECTIVES: MRI is the preferred staging modality for rectal carcinoma patients. This work assesses the CT-MRI co-registration accuracy of four commercial rigid-body techniques for external beam radiotherapy treatment planning for patients treated in the prone position without fiducial markers. METHODS: 17 patients with biopsy-proven rectal carcinoma were scanned with CT and MRI in the prone position without the use of fiducial markers. A reference co-registration was performed by consensus of a radiologist and two physicists. This was compared with two automated and two manual techniques on two separate treatment planning systems. Accuracy and reproducibility were analysed using a measure of target registration error (TRE) that was based on the average distance of the mis-registration between vertices of the clinically relevant gross tumour volume as delineated on the CT image. RESULTS: An automated technique achieved the greatest accuracy, with a TRE of 2.3 mm. Both automated techniques demonstrated perfect reproducibility and were significantly faster than their manual counterparts. There was a significant difference in TRE between registrations performed on the two planning systems, but there were no significant differences between the manual and automated techniques. CONCLUSION: For patients with rectal cancer, MRI acquired in the prone treatment position without fiducial markers can be accurately registered with planning CT. An automated registration technique offered a fast and accurate solution with associated uncertainties within acceptable treatment planning limits.


Assuntos
Carcinoma/diagnóstico , Carcinoma/radioterapia , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Retais/diagnóstico , Neoplasias Retais/radioterapia , Tomografia Computadorizada por Raios X , Humanos , Reprodutibilidade dos Testes
4.
Phys Med Biol ; 54(24): 7263-83, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19926913

RESUMO

Methods of measuring uncertainties in rigid body image registration of fan beam computed tomography (FBCT) to cone beam CT (CBCT) have been developed for automatic image registration algorithms in a commercial image guidance system (Synergy, Elekta, UK). The relationships between image registration uncertainty and both imaging dose and image resolution have been investigated with an anthropomorphic skull phantom and further measurements performed with patient images of the head. A new metric of target registration error is proposed. The metric calculates the mean distance traversed by a set of equi-spaced points on the surface of a 5 cm sphere, centred at the isocentre when transformed by the residual error of registration. Studies aimed at giving practical guidance on the use of the Synergy automated image registration, including choice of algorithm and use of the Clipbox are reported. The chamfer-matching algorithm was found to be highly robust to the increased noise induced by low-dose acquisitions. This would allow the imaging dose to be reduced from the current clinical norm of 2 mGy to 0.2 mGy without a clinically significant loss of accuracy. A study of the effect of FBCT slice thickness/spacing and CBCT voxel size showed that 2.5 mm and 1 mm, respectively, gave acceptable image registration performance. Registration failures were highly infrequent if the misalignment was typical of normal clinical set-up errors and these were easily identified. The standard deviation of translational registration errors, measured with patient images, was 0.5 mm on the surface of a 5 cm sphere centred on the treatment centre. The chamfer algorithm is suitable for routine clinical use with minimal need for close inspection of image misalignment.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador/métodos , Radioterapia , Incerteza , Algoritmos , Humanos , Imagens de Fantasmas , Crânio/diagnóstico por imagem
5.
Phys Med Biol ; 53(19): 5275-93, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18758000

RESUMO

For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF(50)) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s=0.15 mm). The mean MTF(50) for five measurements was 0.278+/-0.004 lp mm(-1) with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF(50) enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Imagens de Fantasmas , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
6.
Br J Radiol ; 79 Spec No 1: S66-78, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16980686

RESUMO

This paper offers a realistic review of kilovoltage X-ray cone beam tomography integrated with the treatment machine for image-guided radiotherapy in the light of experience taking a commercial system from prototype development into clinical use. It shows that key practicalities cannot be ignored, in particular the regular characterization of mechanical flex during gantry rotation, the mapping of defects in flat panel image transducers and their response to X-ray exposure. The number of X-ray projections and the doses required for clinically useful cone beam reconstruction at different therapy sites are considered in the context of imaging that is fit for purpose. Three roles for cone beam tomography in radiotherapy are identified: patient setup in three dimensions (3D), where even low dose cone beam tissue detail is superior to megavoltage imaging; disease targeting where, despite wide field scatter and slow scanning, it is possible to generate images that are suitable for tumour delineation even at challenging sites; adaptive treatment planning, where calibrated cone beam images have been shown to provide sufficient target detail to support "plan of the day" selection and have the potential for planning with bulk corrections. With frequent use in mind, the need to limit patient dose during setup, yet maximize much needed image quality in the target zone, is considered. Finally, it is noted that the development of cone beam tomography for radiotherapy is far from complete, with X-ray source, image transducer, reconstruction algorithms and techniques for image profile collection still being researched.


Assuntos
Radioterapia Conformacional/métodos , Tomografia Computadorizada por Raios X/tendências , Humanos , Radiografia Intervencionista , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Raios X
8.
Br J Radiol ; 72(862): 1000-5, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10673953

RESUMO

Advances in external beam therapy technology have made routine, efficient conformal therapy a reality. With it comes the increasing need for online treatment verification, which is only achievable at present through the use of electronic portal imaging devices (EPIDs). For a large radiotherapy centre, the provision of one EPID per treatment machine proves extremely expensive. This paper details modifications to the design of a commercial fluoroscopic EPID (the SRI-100) to produce a portable system, capable of providing quick, high quality imaging on more than one treatment machine. We describe the necessary hardware and software changes made to the system, as well as the variety of mechanical and quality control checks performed for testing the stability and quality of the imaging. The modified system has been found to be both electronically and mechanically robust, with associated image quality, scaling, distortion and movement similar to other EPIDs in the department. Although the modification was designed specifically to allow for the acquisition of images from multiple treatment machines, it may also enable the operation of the EPID for other uses such as total body irradiation (TBI) treatment verification and a further range of quality control procedures on the linear accelerator itself.


Assuntos
Assistência Ambulatorial , Radioterapia Conformacional/instrumentação , Tecnologia Radiológica/instrumentação , Eletrônica Médica , Desenho de Equipamento , Fluoroscopia , Humanos , Radioterapia Conformacional/normas , Software
9.
Phys Med Biol ; 43(10): 2769-84, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9814516

RESUMO

The implementation of intensity modulated radiotherapy by dynamic multileaf collimator control involves the use of interpreter software which creates leaf trajectory plans for each leaf pair. Interpreter software for use with an Elekta SL15 linear accelerator and dedicated multileaf collimator has been written and tested. In practice the ideal trajectory plans often predict contact between leaves from opposing leaf banks, but this is prohibited by control software on the Elekta system as it could lead to mechanical damage. If the modulation within the geometric limits of a shaped field is not to be compromised then strategies to avoid leaf contact result in additional unwanted doses outside the geometric edge. The magnitude of any such additional dose can be reduced to acceptable levels by a technique which we have called rectangular edge synchronization. The performance of interpreter software which incorporates rectangular edge synchronization has been compared with that of potentially more efficient software which does not. The option containing the rectangular edge synchronization algorithm was shown to work consistently well at high monitor unit rates, and without incurring leaf contacts, under a wide range of test conditions. It therefore provides a sound basis for using intensity modulation to replace mechanical wedges, to simulate customized patient shape compensators, or to implement the results of inverse treatment planning processes that require superimposed intensity modulated beams.


Assuntos
Radioterapia/métodos , Algoritmos , Simulação por Computador , Dosimetria Fotográfica , Aceleradores de Partículas , Radiometria , Software
10.
Phys Med Biol ; 43(10): 3157-65, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9814543

RESUMO

The tongue and groove effect is an underdosing effect which can occur in certain applications of multileaf collimators. It results from the need to overlap adjacent leaves of a multileaf collimator in order to limit leakage between leaves. The applications in which the effect can occur are the abutment of fields where the beam edges are defined by the leaf edge and the production of intensity-modulated fields by dynamic collimation. The effect has been measured for the 'worst case' when just two MLC fields are matched along leaf edges which have overlapping steps. Measurements of the dose have been made at d(max) and also at a more clinically relevant depth of 87 mm in Perspex for beam energies of 6 MV, 8 MV and 20 MV on two Philips SL series accelerators. Dose distributions were recorded on radiographic film which was subsequently digitized for analysis. The dose reduction of the tongue and groove effect was found to be 15-28% and spread over a width of 3.8 to 4.2 mm. This is somewhat shallower and wider than would be expected from a simple, idealized model of the effect which would predict a dose reduction of 80% over a width of 1 mm.


Assuntos
Radiação Ionizante , Radioterapia/métodos , Aceleradores de Partículas , Radiometria , Filme para Raios X , Raios X
11.
Br J Radiol ; 71(842): 160-6, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9579180

RESUMO

Functional magnetic resonance imaging (fMRI) has been performed on a standard 1 T system using a pulse sequence developed to utilize blood oxygen level dependent (BOLD) contrast and an off-line analysis routine using correlation techniques. The sequence and the data analysis routine have been validated by reproducing the conventional hand movement paradigm studies reported by numerous other workers. Our work has then been extended to investigate cerebral foci for a tonic pain stimulus and the cortical representation of oesophageal stimulation. Both these studies relate to paradigms where the expected BOLD signal is significantly less than that encountered for motor or visual cortex paradigms. The results show good agreement with other modalities (positron emission tomography, magnetoencephalography and cortical evoked potentials). Performing fMRI at 1 T is slightly controversial. However, our successful study of demanding paradigms, using a standard clinical 1 T imaging system, has important implications for many other users operating at this field strength.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Temperatura Baixa , Esôfago/fisiologia , Potenciais Evocados , Dedos/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Movimento/fisiologia , Dor/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...