Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Biol Ther ; 24(6): 425-432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38943466

RESUMO

INTRODUCTION: CAR T cells have generated great excitement due to their remarkable clinical response rates in selected hematologic malignancies. However, these engineered immune cells are living drugs which are hard to control after administration. AREAS COVERED: We discuss small molecule-regulated switch systems which can potentially be used to control CAR T cell function within the patient, as well as the most important obstacles in the CAR T cell field, which might be overcome with those switch systems. EXPERT OPINION: There is an urgent need to develop advanced switch systems. Once available, we expect that they will open up new avenues for future CAR T cell generations.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Animais , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia
2.
Cell Rep Methods ; 4(4): 100728, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38492569

RESUMO

Chimeric antigen receptor (CAR) T cells have shown remarkable response rates in hematological malignancies. In contrast, CAR T cell treatment of solid tumors is associated with several challenges, in particular the expression of most tumor-associated antigens at lower levels in vital organs, resulting in on-target/off-tumor toxicities. Thus, innovative approaches to improve the tumor specificity of CAR T cells are urgently needed. Based on the observation that many human solid tumors activate epidermal growth factor receptor (EGFR) on their surface through secretion of EGFR ligands, we developed an engineering strategy for CAR-binding domains specifically directed against the ligand-activated conformation of EGFR. We show, in several experimental systems, that the generated binding domains indeed enable CAR T cells to distinguish between active and inactive EGFR. We anticipate that this engineering concept will be an important step forward to improve the tumor specificity of CAR T cells directed against EGFR-positive solid cancers.


Assuntos
Receptores ErbB , Receptores de Antígenos Quiméricos , Linfócitos T , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Animais , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Camundongos
3.
Interface Focus ; 9(2): 20180072, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842873

RESUMO

Lectins are carbohydrate-binding proteins with specificity for their target ligands. They play diverse roles in cellular recognition and signalling processes, as well as in infections and cancer metastasis. Owing to their specificity, lectins find application in biotechnology and medicine, e.g. for blood group typing, purification of glycoproteins or lipids and as markers that target cancer cells. For some applications, lectins are immobilized on a solid support, or they are conjugated with other molecules. Classical protein conjugation reactions at nucleophilic amino acids such as cysteine or lysine are often non-selective, and the site of conjugation is difficult to pre-define. Random conjugation, however, can interfere with protein function. Therefore, we sought to equip lectins with a unique reactive handle, which can be conjugated with other molecules in a pre-defined manner. We site-specifically introduced non-canonical amino acids carrying bioorthogonal reactive groups into several lectins. As a proof of principle, we conjugated these 'clickable lectins' with small molecules. Furthermore, we conjugated lectins with different ligand specificities with one another to produce superlectins. The 'clickable lectins' might be useful for any process where lectins shall be conjugated with another module in a selective, pre-defined and site-specific manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...