Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 11(3): 1336-1353, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206414

RESUMO

The retinal volumetric flow rate contains useful information not only for ophthalmology but also for the diagnosis of common civilization diseases such as diabetes, Alzheimer's disease, or cerebrovascular diseases. Non-invasive optical methods for quantitative flow assessment, such as Doppler optical coherence tomography (OCT), have certain limitations. One is the phase wrapping that makes simultaneous calculations of the flow in all human retinal vessels impossible due to a very large span of flow velocities. We demonstrate that three-dimensional Doppler OCT combined with three-dimensional four Fourier transform fast phase unwrapping (3D 4FT FPU) allows for the calculation of the volumetric blood flow rate in real-time by the implementation of the algorithms in a graphics processing unit (GPU). The additive character of the flow at the furcations is proven using a microfluidic device with controlled flow rates as well as in the retinal veins bifurcations imaged in the optic disc area of five healthy volunteers. We show values of blood flow rates calculated for retinal capillaries and vessels with diameters in the range of 12-150 µm. The potential of quantitative measurement of retinal blood flow volume includes noninvasive detection of carotid artery stenosis or occlusion, measuring vascular reactivity and evaluation of vessel wall stiffness.

2.
Angew Chem Int Ed Engl ; 57(25): 7396-7400, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29513902

RESUMO

Optical coherence tomography (OCT) was used for non-invasive examination of a well-known, yet complex, painting from the studio of Leonardo da Vinci in combination with routine imaging in various bands of electromagnetic radiation. In contrast with these techniques, OCT provides depth-resolved information. Three post-processing modalities were explored: cross-sectional views, maps of scattering from given depths, and their 3D models. Some hidden alterations of the painting owing to past restorations were traced: retouching and overpainting with their positioning within varnish layers as well as indications of a former transfer to canvas.

3.
Biomed Opt Express ; 8(12): 5637-5650, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29296493

RESUMO

In recent years, three-dimensional mesoscopic imaging has gained significant importance in life sciences for fundamental studies at the whole-organ level. In this manuscript, we present an optical projection tomography (OPT) method designed for imaging of the intact mouse brain. The system features an isotropic resolution of ~50 µm and an acquisition time of four to eight minutes, using a 3-day optimized clearing protocol. Imaging of the brain autofluorescence in 3D reveals details of the neuroanatomy, while the use of fluorescent labels displays the vascular network and amyloid deposition in 5xFAD mice, an important model of Alzheimer's disease (AD). Finally, the OPT images are compared with histological slices.

4.
Appl Spectrosc ; 67(8): 960-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23876735

RESUMO

A detailed feasibility study on the combined use of laser-induced breakdown spectroscopy with optical coherence tomography (LIBS/OCT), aiming at a realistic depth-resolved elemental analysis of multilayer stratigraphies in paintings, is presented. Merging a high spectral resolution LIBS system with a high spatial resolution spectral OCT instrument significantly enhances the quality and accuracy of stratigraphic analysis. First, OCT mapping is employed prior to LIBS analysis in order to assist the selection of specific areas of interest on the painting surface to be examined in detail. Then, intertwined with LIBS, the OCT instrument is used as a precise profilometer for the online determination of the depth of the ablation crater formed by individual laser pulses during LIBS depth-profile analysis. This approach is novel and enables (i) the precise in-depth scaling of elemental concentration profiles, and (ii) the recognition of layer boundaries by estimating the corresponding differences in material ablation rate. Additionally, the latter is supported, within the transparency of the object, by analysis of the OCT cross-sectional views. The potential of this method is illustrated by presenting results on the detailed analysis of the structure of an historic painting on canvas performed to aid planned restoration of the artwork.

5.
J Biomed Opt ; 17(10): 100502, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23042477

RESUMO

The authors present the application of graphics processing unit (GPU) programming for real-time three-dimensional (3-D) Fourier domain optical coherence tomography (FdOCT) imaging with implementation of flow visualization algorithms. One of the limitations of FdOCT is data processing time, which is generally longer than data acquisition time. Utilizing additional algorithms, such as Doppler analysis, further increases computation time. The general purpose computing on GPU (GPGPU) has been used successfully for structural OCT imaging, but real-time 3-D imaging of flows has so far not been presented. We have developed software for structural and Doppler OCT processing capable of visualization of two-dimensional (2-D) data (2000 A-scans, 2048 pixels per spectrum) with an image refresh rate higher than 120 Hz. The 3-D imaging of 100×100 A-scans data is performed at a rate of about 9 volumes per second. We describe the software architecture, organization of threads, and optimization. Screen shots recorded during real-time imaging of a flow phantom and the human eye are presented.


Assuntos
Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Tomografia de Coerência Óptica/métodos , Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Efeito Doppler , Olho/irrigação sanguínea , Humanos , Imagens de Fantasmas
6.
Opt Express ; 20(2): 1337-59, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22274479

RESUMO

Speckle pattern, which is inherent in coherence imaging, influences significantly axial and transversal resolution of Optical Coherence Tomography (OCT) instruments. The well known speckle removal techniques are either sensitive to sample motion, require sophisticated and expensive sample tracking systems, or involve sophisticated numerical procedures. As a result, their applicability to in vivo real-time imaging is limited. In this work, we propose to average multiple A-scans collected in a fully controlled way to reduce the speckle contrast. This procedure involves non-coherent averaging of OCT A-scans acquired from adjacent locations on the sample. The technique exploits scanning protocol with fast beam deflection in the direction perpendicular to lateral dimension of the cross-sectional image. Such scanning protocol reduces the time interval between A-scans to be averaged to the repetition time of the acquisition system. Consequently, the averaging algorithm is immune to bulk motion of an investigated sample, does not require any sophisticated data processing to align cross-sectional images, and allows for precise control of lateral shift of the scanning beam on the object. The technique is tested with standard Spectral OCT system with an extra resonant scanner used for rapid beam deflection in the lateral direction. Ultrahigh speed CMOS camera serves as a detector and acquires 200,000 spectra per second. A dedicated A-scan generation algorithm allows for real-time display of images with reduced speckle contrast at 6 frames/second. This technique is applied to in vivo imaging of anterior and posterior segments of the human eye and human skin.


Assuntos
Algoritmos , Artefatos , Modelos Teóricos , Retina/anatomia & histologia , Pele/anatomia & histologia , Tomografia de Coerência Óptica/métodos , Dermoscopia/instrumentação , Dermoscopia/métodos , Dermoscopia/normas , Técnicas de Diagnóstico Oftalmológico/instrumentação , Técnicas de Diagnóstico Oftalmológico/normas , Desenho de Equipamento , Humanos , Unhas/anatomia & histologia , Imagens de Fantasmas , Retina/diagnóstico por imagem , Design de Software , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/normas , Ultrassonografia
7.
Acc Chem Res ; 43(6): 826-36, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20043663

RESUMO

Identification of the order, thickness, composition, and possibly the origin of the paint layers forming the structure of a painting, that is, its stratigraphy, is important in confirming its attribution and history as well as planning conservation treatments. The most common method of examination is analysis of a sample collected from the art object, both visually with a microscope and instrumentally through a variety of sophisticated, modern analytical tools. Because of its invasiveness, however, sampling is less than ideally compatible with conservation ethics; it is severely restricted with respect to the amount of material extirpated from the artwork. Sampling is also rather limited in that it provides only very local information. There is, therefore, a great need for a noninvasive method with sufficient in-depth resolution for resolving the stratigraphy of works of art. Optical coherence tomography (OCT) is a noninvasive, noncontact method of optical sectioning of partially transparent objects, with micrometer-level axial resolution. The method utilizes near-infrared light of low intensity (a few milliwatts) to obtain cross-sectional images of various objects; it has been mostly used in medical diagnostics. Through the serial collection of many such images, volume information may be extracted. The application of OCT to the examination of art objects has been in development since 2003. In this Account, we present a short introduction to the technique, briefly discuss the apparatus we use, and provide a paradigm for reading OCT tomograms. Unlike the majority of papers published previously, this Account focuses on one, very specific, use of OCT. We then consider two examples of successful, practical application of the technique. At the request of a conservation studio, the characteristics of inscriptions on two oil paintings, originating from the 18th and 19th centuries, were analyzed. In the first case, it was possible to resolve some questions concerning the history of the work. From an analysis of the positions of the paint layers involved in three inscriptions in relation to other strata of the painting, the order of events in its history was resolved. It was evident that the original text had been overpainted and that the other inscriptions were added later, thus providing convincing evidence as to the painting's true date of creation. In the second example, a painting was analyzed with the aim of confirming the possibility of forgery of the artist's signature, and evidence strongly supporting this supposition is presented. These two specific examples of successful use of the technique on paintings further demonstrate how OCT may be readily adaptable to other similar tasks, such as in the fields of forensic or materials science. In a synergistic approach, in which information is obtained with a variety of noninvasive techniques, OCT is demonstrably effective and offers great potential for further development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...