Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Cardiovasc Res ; 120(5): 531-547, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38332738

RESUMO

AIMS: Heart failure due to ischaemic heart disease (IHD) is a leading cause of mortality worldwide. A major contributing factor to IHD-induced cardiac damage is hypoxia. Sequestosome 1 (p62) is a multi-functional adaptor protein with pleiotropic roles in autophagy, proteostasis, inflammation, and cancer. Despite abundant expression in cardiomyocytes, the role of p62 in cardiac physiology is not well understood. We hypothesized that cardiomyocyte-specific p62 deletion evokes hypoxia-induced cardiac pathology by impairing hypoxia-inducible factor 1α (Hif-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) signalling. METHODS AND RESULTS: Adult mice with germline deletion of cardiomyocyte p62 exhibited mild cardiac dysfunction under normoxic conditions. Transcriptomic analyses revealed a selective impairment in Nrf2 target genes in the hearts from these mice. Demonstrating the functional importance of this adaptor protein, adult mice with inducible depletion of cardiomyocyte p62 displayed hypoxia-induced contractile dysfunction, oxidative stress, and cell death. Mechanistically, p62-depleted hearts exhibit impaired Hif-1α and Nrf2 transcriptional activity. Because findings from these two murine models suggested a cardioprotective role for p62, mechanisms were evaluated using H9c2 cardiomyoblasts. Loss of p62 in H9c2 cells exposed to hypoxia reduced Hif-1α and Nrf2 protein levels. Further, the lack of p62 decreased Nrf2 protein expression, nuclear translocation, and transcriptional activity. Repressed Nrf2 activity associated with heightened Nrf2-Keap1 co-localization in p62-deficient cells, which was concurrent with increased Nrf2 ubiquitination facilitated by the E3 ligase Cullin 3, followed by proteasomal-mediated degradation. Substantiating our results, a gain of p62 in H9c2 cells stabilized Nrf2 and increased the transcriptional activity of Nrf2 downstream targets. CONCLUSION: Cardiac p62 mitigates hypoxia-induced cardiac dysfunction by stabilizing Hif-1α and Nrf2.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Proteína Sequestossoma-1 , Animais , Hipóxia Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Estabilidade Proteica , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Transdução de Sinais , Ubiquitinação , Camundongos
2.
Virol J ; 21(1): 36, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297379

RESUMO

INTRODUCTION: HIV reservoir quantification is essential for evaluation of HIV curative strategies and may provide valuable insights about reservoir dynamics during antiretroviral therapy. The Intact Proviral DNA Assay (IPDA) provides the unique opportunity to quantify the intact and defective reservoir. The current IPDA is optimized for HIV-1 subtype B, the dominant subtype in resource-rich settings. However, subtype C is dominant in Sub-Saharan Africa, jointly accounting for around 60% of the pandemic. We developed an assay capable of quantifying intact and defective proviral HIV-1 DNA of subtype B and C. METHODS: Primer and probe sequences were strategically positioned at conserved regions in psi and env and adapted to subtype B&C. In silico analysis of 752 subtype B and 697 subtype C near-full length genome sequences (nFGS) was performed to predict  the specificity and sensitivity. Gblocks were used to determine the limit of blank (LoB), limit of detection (LoD), and different annealing temperatures were tested to address impact of sequence variability. RESULTS: The in silico analysis showed that the HIV-1 B&C IPDA correctly identified 100% of the intact subtype B, and 86% of the subtype C sequences. In contrast, the original IPDA identified 86% and 12% of these subtype B and C sequences as intact. Furthermore, the HIV-1 B&C IPDA correctly identified hypermutated (87% and 88%) and other defective sequences (73% and 66%) for subtype B and C with comparable specificity as the original IPDA for subtype B (59% and 63%). Subtype B cis-acting sequences were more frequently identified as intact by the HIV-1 B&C IPDA compared to the original IPDA (39% and 2%). The LoB for intact proviral DNA copies was 0, and the LoD for intact proviral DNA copies was 6 (> 95% certainty) at 60 °C. Quantification of 2-6 copies can be performed with > 80% certainty. Lowering the annealing temperature to 55 °C slightly lowered the specificity but prevented exclusion of samples with single mutations in the primer/probe region. CONCLUSIONS: We developed a robust and sensitive assay for the quantification of intact and defective HIV-1 subtype B and C proviral DNA, making this a suitable tool to monitor the impact of (large-scale) curative interventions.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Provírus/genética , DNA Viral/genética , DNA Viral/análise , Sequência de Bases
3.
Front Physiol ; 14: 1263500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942230

RESUMO

Introduction: A hallmark of aging is poor muscle recovery following disuse atrophy. Efficacious strategies to enhance muscle recovery following disuse atrophy in aging are non-existent. Prior exercise training could result in favorable muscle morphological and cellular adaptations that may promote muscle recovery in aging. Here, we characterized the impact of exercise training on skeletal muscle inflammatory and metabolic profiles and cellular remodeling and function, together with femoral artery reactivity prior to and following recovery from disuse atrophy in aged male mice. We hypothesized that 12 weeks of treadmill training in aged male mice would improve skeletal muscle cellular remodeling at baseline and during recovery from disuse atrophy, resulting in improved muscle regrowth. Methods: Physical performance, ex vivo muscle and vascular function, tissue and organ mass, hindlimb muscle cellular remodeling (macrophage, satellite cell, capillary, myofiber size, and fibrosis), and proteolytic, inflammatory, and metabolic muscle transcripts were evaluated in aged exercise-trained and sedentary mice. Results: We found that at baseline following exercise training (vs. sedentary mice), exercise capacity and physical function increased, fat mass decreased, and endothelial function improved. However, exercise training did not alter tibialis anterior or gastrocnemius muscle transcriptional profile, macrophage, satellite cell, capillarity or collagen content, or myofiber size and only tended to increase tibialis mass during recovery from disuse atrophy. Conclusion: While exercise training in old male mice improved endothelial function, physical performance, and whole-body tissue composition as anticipated, 12 weeks of treadmill training had limited impact on skeletal muscle remodeling at baseline or in response to recovery following disuse atrophy.

4.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37639557

RESUMO

Diabetic cardiomyopathy, an increasingly global epidemic and a major cause of heart failure with preserved ejection fraction (HFpEF), is associated with hyperglycemia, insulin resistance, and intracardiomyocyte calcium mishandling. Here we identify that, in db/db mice with type 2 diabetes-induced HFpEF, abnormal remodeling of cardiomyocyte transverse-tubule microdomains occurs with downregulation of the membrane scaffolding protein cardiac bridging integrator 1 (cBIN1). Transduction of cBIN1 by AAV9 gene therapy can restore transverse-tubule microdomains to normalize intracellular distribution of calcium-handling proteins and, surprisingly, glucose transporter 4 (GLUT4). Cardiac proteomics revealed that AAV9-cBIN1 normalized components of calcium handling and GLUT4 translocation machineries. Functional studies further identified that AAV9-cBIN1 normalized insulin-dependent glucose uptake in diabetic cardiomyocytes. Phenotypically, AAV9-cBIN1 rescued cardiac lusitropy, improved exercise intolerance, and ameliorated hyperglycemia in diabetic mice. Restoration of transverse-tubule microdomains can improve cardiac function in the setting of diabetic cardiomyopathy and can also improve systemic glycemic control.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Hiperglicemia , Animais , Camundongos , Glicemia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/terapia , Insuficiência Cardíaca/terapia , Cálcio , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Volume Sistólico , Antiarrítmicos , Cardiotônicos , Miócitos Cardíacos , Hiperglicemia/terapia , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos , Inibidores Enzimáticos , Terapia Genética
5.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168260

RESUMO

Objective: Pathologies including cardiovascular diseases, cancer, and neurological disorders are caused by the accumulation of misfolded / damaged proteins. Intracellular protein degradation mechanisms play a critical role in the clearance of these disease-causing proteins. Chaperone mediated autophagy (CMA) is a protein degradation pathway that employs chaperones to bind proteins, bearing a unique KFERQ-like motif, for delivery to a CMA-specific Lysosome Associated Membrane Protein 2a (LAMP2a) receptor for lysosomal degradation. To date, steady-state CMA function has been assessed by measuring LAMP2A protein expression. However, this does not provide information regarding CMA degradation activity. To fill this dearth of tools / assays to measure CMA activity, we generated a CMA-specific fluorogenic substrate assay. Methods: A KFERQ-AMC [Lys-Phe-Asp-Arg-Gln-AMC(7-amino-4-methylcou-marin)] fluorogenic CMA substrate was synthesized from Solid-Phase Peptide Synthesis. KFERQ-AMC, when cleaved via lysosomal hydrolysis, causes AMC to release and fluoresce (Excitation:355 nm, Emission:460 nm). Using an inhibitor of lysosomal proteases, i.e., E64D [L-trans-Epoxy-succinyl-leucylamido(4-guanidino)butane)], responsible for cleaving CMA substrates, the actual CMA activity was determined. Essentially, CMA activity = (substrate) fluorescence - (substrate+E64D) fluorescence . To confirm specificity of the KFERQ sequence for CMA, negative control peptides were used. Results: Heart, liver, and kidney lysates containing intact lysosomes were obtained from 4-month-old adult male mice. First, lysates incubated with KFERQ-AMC displayed a time dependent (0-5 hour) increase in AMC fluorescence vs. lysates incubated with negative control peptides. These data validate the specificity of KFERQ for CMA. Of note, liver exhibited the highest CMA (6-fold; p<0.05) > kidney (2.4-fold) > heart (0.4-fold) at 5-hours. Second, E64D prevented KFERQ-AMC degradation, substantiating that KFERQ-AMC is degraded via lysosomes. Third, cleavage of KFERQ-AMC and resulting AMC fluorescence was inhibited in Human embryonic kidney (HEK) cells and H9c2 cardiac cells transfected with Lamp2a vs. control siRNA. Further, enhancing CMA using Lamp2a adenovirus upregulated KFERQ degradation. These data suggest that LAMP2A is required for KFERQ degradation. Conclusion. We have generated a novel assay for measuring CMA activity in cells and tissues in a variety of experimental contexts.

6.
Aging (Albany NY) ; 14(23): 9388-9392, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470665

RESUMO

During the aging process damaged/dysfunctional proteins and organelles accumulate and contribute to organ dysfunction. Luckily, there is a conserved intracellular process to reuse and recycle these dysregulated cellular components termed macroautophagy (autophagy). Unfortunately, strong evidence indicates autophagy is compromised with aging, protein quality control is jeopardized, and resultant proteotoxicity can contribute significantly to age-associated organ dysfunction. Are there interventions that can re-establish autophagic flux that is otherwise impaired with aging? With particular regard to the heart, here we review evidence that caloric-restriction, the polyamine spermidine, and the mTOR inhibitor rapamycin, even when initiated late-in-life, restore cardiomyocyte autophagy to an extent that lessens age-associated cardiac dysfunction. Cho et al. provide a physiological intervention to this list i.e., regular physical exercise initiated late-in-life boosts cardiomyocyte autophagic flux and rejuvenates cardiac function in male mice. While this study provides strong evidence for a mechanism whereby heightened physical activity can lead to improved heart health in the context of aging, (i) only male mice were studied; (ii) the intensity of exercise-training might not be suitable for all; and (iii) mice with aging-associated comorbidities were not investigated. Nonetheless, Cho et al. provide robust evidence that a low-cost and simple behavioral intervention initiated late-in-life improves cardiomyocyte autophagic flux and rejuvenates cardiac function.


Assuntos
Insuficiência de Múltiplos Órgãos , Miócitos Cardíacos , Masculino , Camundongos , Animais , Insuficiência de Múltiplos Órgãos/metabolismo , Miócitos Cardíacos/metabolismo , Envelhecimento/fisiologia , Autofagia , Espermidina/metabolismo
7.
Am J Physiol Cell Physiol ; 323(5): C1555-C1575, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35584327

RESUMO

Chaperone-mediated autophagy (CMA) is a chaperone-dependent process of selective cytosolic protein turnover that targets specific proteins to lysosomes for degradation. Enhancing protein degradation mechanisms has been shown to be beneficial in multiple models of cardiac disease, including myocardial infarction (MI) and ischemia-reperfusion (I/R) injury. However, the causal role of CMA in cardiomyocyte injury and death is largely unknown. Hypoxia is an important contributor to both MI and I/R damage, which are major, precedent causes of heart failure. Upregulating CMA was hypothesized to protect against hypoxia-induced cardiomyocyte death. Lysosome-associated membrane protein 2a (Lamp2a) overexpression and knockdown were used to causally study CMA's role in hypoxically stressed cardiomyocytes. LAMP2a protein levels were used as both a primary indicator and driver of CMA function. Hypoxic stress was stimulated by CoCl2 treatment, which increased LAMP2a protein levels (+1.4-fold) and induced cardiomyocyte apoptosis (+3.2-4.0-fold). Lamp2a siRNA knockdown (-3.2-fold) of control cardiomyocytes increased apoptosis (+1.8-fold) suggesting that loss of CMA is detrimental for cardiomyocyte survival. However, there was neither an additive nor a synergistic effect on cell death when Lamp2a-silenced cells were treated with CoCl2. Conversely, Lamp2a overexpression (+3.0-fold) successfully reduced hypoxia-induced apoptosis by ∼50%. LAMP2a was also significantly increased (+1.7-fold) in ischemic heart failure patient samples, similar to hypoxically stressed cardiomyocytes. The failing ischemic hearts may have had insufficient CMA activation. To our knowledge, this study for the first time establishes a protective role for CMA (via Lamp2a overexpression) against hypoxia-induced cardiomyocyte loss and reveals the intriguing possibility that CMA activation may offer a cardioprotective treatment for ischemic heart disease.


Assuntos
Autofagia Mediada por Chaperonas , Insuficiência Cardíaca , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Miócitos Cardíacos/metabolismo , Autofagia/genética , Lisossomos/metabolismo , Hipóxia/metabolismo , Apoptose , Insuficiência Cardíaca/metabolismo
8.
Mol Nutr Food Res ; 66(8): e2100784, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120277

RESUMO

SCOPE: In diabetes, endothelial inflammation and dysfunction play a pivotal role in the development of vascular disease. This study investigates the effect of dietary blueberries on vascular complications and gut microbiome in diabetic mice. METHODS AND RESULTS: Seven-week-old diabetic db/db mice consume a standard diet (db/db) or a diet supplemented with 3.8% freeze-dried blueberry (db/db+BB) for 10 weeks. Control db/+ mice are fed a standard diet (db/+). Vascular inflammation is assessed by measuring monocyte binding to vasculature and inflammatory markers. Isometric tension procedures are used to assess mesenteric artery function. db/db mice exhibit enhanced vascular inflammation and reduced endothelial-dependent vasorelaxation as compared to db/+ mice, but these are improved in db/db+BB mice. Blueberry supplementation reduces the expression of NOX4 and IκKß in the aortic vessel and vascular endothelial cells (ECs) isolated from db/db+BB compared to db/db mice. The blueberry metabolites serum reduces glucose and palmitate induced endothelial inflammation in mouse aortic ECs. Further, blueberry supplementation increases commensal microbes and modulates the functional potential of gut microbes in diabetic mice. CONCLUSION: Dietary blueberry suppresses vascular inflammation, attenuates arterial endothelial dysfunction, and supports the growth of commensal microbes in diabetic mice. The endothelial-specific vascular benefits of blueberries are mediated through NOX4 signaling.


Assuntos
Mirtilos Azuis (Planta) , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Microbioma Gastrointestinal , NADPH Oxidase 4 , Animais , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Angiopatias Diabéticas/dietoterapia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/microbiologia , Dieta , Células Endoteliais/metabolismo , Endotélio Vascular , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , NADPH Oxidase 4/metabolismo
9.
Am J Physiol Renal Physiol ; 322(4): F437-F448, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073210

RESUMO

Calcineurin inhibitors such as cyclosporin A (CsA) have been widely used to improve graft survival following solid-organ transplantation. However, the clinical use of CsA is often limited by its nephrotoxicity. The present study tested the hypothesis that activation of the (pro)renin receptor (PRR) contributes to CsA-induced nephropathy by activating the renin-angiotensin system (RAS). Renal injury in male Sprague-Dawley rats was induced by a low-salt diet combined with CsA as evidenced by elevated plasma creatinine and blood urea nitrogen levels, decreased creatinine clearance and induced renal inflammation, apoptosis and interstitial fibrosis, and elevated urinary N-acetyl-ß-d-glucosaminidase activity and urinary kidney injury molecule-1 content. Each index of renal injury was attenuated following 2 wk of treatment with the PRR decoy inhibitor PRO20. Although CsA-treated rats with kidney injury displayed increased renal soluble (s)PRR abundance, plasma sPRR, renin activity, angiotensin II, and heightened urinary total prorenin/renin content, RAS activation was attenuated by PRO20. Exposure of cultured human renal proximal tubular HK-2 cells to CsA induced expression of fibronectin and sPRR production, but the fibrotic response was attenuated by PRO20 and siRNA-mediated PRR knockdown. These findings support the hypothesis that activation of PRR contributes to CsA-induced nephropathy by activating the RAS in rats. Of importance, we provide strong proof of concept that targeting PRR offers a novel therapeutic strategy to limit nephrotoxic effects of immunosuppressant drugs.NEW & NOTEWORTHY The present study reports, for the first time, that activation of the (pro)renin receptor drives the renin-angiotensin system to induce renal injury during cyclosporin A administration. More importantly, our study has identified that antagonism with PRO20 offers a novel intervention in the management of side effects of cyclosporin A.


Assuntos
Nefropatias , Renina , Animais , Creatinina/metabolismo , Ciclosporina/toxicidade , Feminino , Humanos , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina
10.
Methods Mol Biol ; 2303: 495-511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626404

RESUMO

Evidence is emerging that disruption of the endothelial glycocalyx might contribute importantly to arterial dysfunction in the context of diabetes. One approach to assess the integrity of the endothelium and the vascular smooth muscle cell layer, in the absence of neural, humoral, and mechanical influences, is by measuring arterial vasomotion ex vivo. Here we describe a procedure to assess non-receptor-mediated vasoconstriction, receptor-mediated vasoconstriction, and endothelium-dependent and -independent vasodilation, in resistance and conductance arteries pressurized to 60 mmHg. In addition to evaluating vasoreactivity using isobaric approaches, the same experimental set-up can be used to initiate a pressure gradient across the artery such that intraluminal, flow-mediated vasodilation can be measured. After recording endothelium-dependent vasodilation using isobaric or flow-mediated approaches, identical interventions can be completed in the presence of enzymes that cleave biologically active heparan sulfates into inactive disaccharide and oligosaccharide fragments to assess the contribution from: (a) endothelial-derived substances (e.g., nitric oxide via nitric oxide synthase inhibition); or (b) important components of the glycocalyx (e.g., removal of heparan sulfate via heparitinase III treatment). Here, we show that acute disruption of a predominant glycosaminoglycan i.e., heparan sulfate impairs intraluminal flow-mediated vasodilation in murine resistance arteries.


Assuntos
Artérias , Animais , Endotélio Vascular , Glicocálix , Heparitina Sulfato , Camundongos , Óxido Nítrico , Vasoconstrição , Vasodilatação
11.
Aging Cell ; 20(10): e13467, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34554626

RESUMO

Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age-associated cardiac dysfunction. Macroautophagy is the process by which post-mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late-in-life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24-month-old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8-month-old (adult) mice (all p < 0.05). To investigate the influence of late-in-life exercise training, additional cohorts of 21-month-old mice did (old-ETR) or did not (old-SED) complete a 3-month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old-ETR vs. old-SED mice at 24 months (all p < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all p < 0.05) in hearts from old-ETR vs. old-SED mice. These data provide the first evidence that a physiological intervention initiated late-in-life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts.


Assuntos
Autofagia/fisiologia , Coração/fisiopatologia , Condicionamento Físico Animal/métodos , Agregados Proteicos/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Animais , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
13.
Nat Rev Cardiol ; 18(10): 701-711, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33772258

RESUMO

Increases in calorie consumption and sedentary lifestyles are fuelling a global pandemic of cardiometabolic diseases, including coronary artery disease, diabetes mellitus, cardiomyopathy and heart failure. These lifestyle factors, when combined with genetic predispositions, increase the levels of circulating lipids, which can accumulate in non-adipose tissues, including blood vessel walls and the heart. The metabolism of these lipids produces bioactive intermediates that disrupt cellular function and survival. A compelling body of evidence suggests that sphingolipids, such as ceramides, account for much of the tissue damage in these cardiometabolic diseases. In humans, serum ceramide levels are proving to be accurate biomarkers of adverse cardiovascular disease outcomes. In mice and rats, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of diabetes, atherosclerosis, hypertension and heart failure. In cultured cells and isolated tissues, ceramides perturb mitochondrial function, block fuel usage, disrupt vasodilatation and promote apoptosis. In this Review, we discuss the body of literature suggesting that ceramides are drivers - and not merely passengers - on the road to cardiovascular disease. Moreover, we explore the feasibility of therapeutic strategies to lower ceramide levels to improve cardiovascular health.


Assuntos
Doenças Cardiovasculares , Ceramidas , Esfingolipídeos , Animais , Doenças Cardiovasculares/epidemiologia , Ceramidas/metabolismo , Camundongos , Ratos , Esfingolipídeos/metabolismo
14.
Clin Sci (Lond) ; 135(6): 793-810, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33625485

RESUMO

Until now, renin-angiotensin system (RAS) hyperactivity was largely thought to result from angiotensin II (Ang II)-dependent stimulation of the Ang II type 1 receptor (AT1R). Here we assessed the role of soluble (pro)renin receptor (sPRR), a product of site-1 protease-mediated cleavage of (pro)renin receptor (PRR), as a possible ligand of the AT1R in mediating: (i) endothelial cell dysfunction in vitro and (ii) arterial dysfunction in mice with diet-induced obesity. Primary human umbilical vein endothelial cells (HUVECs) treated with a recombinant histidine-tagged sPRR (sPRR-His) exhibited IκBα degradation concurrent with NF-κB p65 activation. These responses were secondary to sPRR-His evoked elevations in Nox4-derived H2O2 production that resulted in inflammation, apoptosis and reduced NO production. Each of these sPRR-His-evoked responses was attenuated by AT1R inhibition using Losartan (Los) but not ACE inhibition using captopril (Cap). Further mechanistic exploration revealed that sPRR-His activated AT1R downstream Gq signaling pathway. Immunoprecipitation coupled with autoradiography experiments and radioactive ligand competitive binding assays indicate sPRR directly interacts with AT1R via Lysine199 and Asparagine295. Important translational relevance was provided by findings from obese C57/BL6 mice that sPRR-His evoked endothelial dysfunction was sensitive to Los. Besides, sPRR-His elevated blood pressure in obese C57/BL6 mice, an effect that was reversed by concurrent treatment with Los but not Cap. Collectively, we provide solid evidence that the AT1R mediates the functions of sPRR during obesity-related hypertension. Inhibiting sPRR signaling should be considered further as a potential therapeutic intervention in the treatment and prevention of cardiovascular disorders involving elevated blood pressure.


Assuntos
Hipertensão/fisiopatologia , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Captopril/farmacologia , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio , Losartan/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Sistema Renina-Angiotensina/efeitos dos fármacos , Receptor de Pró-Renina
15.
Sci Rep ; 10(1): 18813, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33110241

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
J Vasc Res ; 57(5): 291-301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32541137

RESUMO

INTRODUCTION: Impaired venous reactivity has potential to contribute to clinically significant pathologies such as arteriovenous fistula (AVF) maturation failure. Vascular segments commonly used in murine preclinical models of AVF include the carotid artery and external jugular vein. Detailed descriptions of isometric procedures to evaluate function of murine external jugular vein ex vivo have not been previously published. OBJECTIVE: To establish isometric procedures to measure naive murine external jugular vein reactivity ex vivo. METHODS: Vasomotor responses of external jugular veins and ipsilateral common carotid arteries from C57BL/6 mice were evaluated using isometric tension procedures. RESULTS: External jugular veins developed tension (p < 0.05) to potassium chloride and U-46619, but not to phenylephrine, whereas common carotid arteries responded to all 3 agents (p < 0.05). While maximal responses to acetylcholine (ACh) were similar between the venous and arterial segments, the dose required to achieve this value was lower (p < 0.05) in the artery versus vein. Nitric oxide synthase inhibition attenuated (p < 0.05) but did not abolish ACh-evoked vasorelaxation in both vascular segments, whereas cyclooxygenase blockade had no effect. Endothelium-independent vasorelaxation to sodium nitroprusside was similar in the artery and vein. CONCLUSION: Vasorelaxation and vasocontraction can be reliably assessed in the external jugular vein in C57BL/6 mice using isometric procedures.


Assuntos
Artéria Carótida Primitiva/fisiologia , Endotélio Vascular/fisiologia , Veias Jugulares/fisiologia , Músculo Liso Vascular/fisiologia , Vasoconstrição , Vasodilatação , Animais , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Veias Jugulares/efeitos dos fármacos , Veias Jugulares/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miografia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Prostaglandinas/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
17.
Cells ; 9(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290135

RESUMO

Cardiovascular disease (CVD) is the number one cause of death in the United States. Advancing age is a primary risk factor for developing CVD. Estimates indicate that 20% of the US population will be ≥65 years old by 2030. Direct expenditures for treating CVD in the older population combined with indirect costs, secondary to lost wages, are predicted to reach $1.1 trillion by 2035. Therefore, there is an eminent need to discover novel therapeutic targets and identify new interventions to delay, lessen the severity, or prevent cardiovascular complications associated with advanced age. Protein and organelle quality control pathways including autophagy/lysosomal and the ubiquitin-proteasome systems, are emerging contributors of age-associated myocardial dysfunction. In general, two findings have sparked this interest. First, strong evidence indicates that cardiac protein degradation pathways are altered in the heart with aging. Second, it is well accepted that damaged and misfolded protein aggregates and dysfunctional mitochondria accumulate in the heart with age. In this review, we will: (i) define the different protein and mitochondria quality control mechanisms in the heart; (ii) provide evidence that each quality control pathway becomes dysfunctional during cardiac aging; and (iii) discuss current advances in targeting these pathways to maintain cardiac function with age.


Assuntos
Autofagia/fisiologia , Doenças Cardiovasculares/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Animais , Doenças Cardiovasculares/patologia , Humanos , Camundongos , Proteólise , Controle de Qualidade
18.
Sci Rep ; 9(1): 15555, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31645573

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Circ Heart Fail ; 12(8): e006085, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31422672

RESUMO

BACKGROUND: The coronary vasculature encounters a reduction in pulsatility after implementing durable continuous-flow left ventricular assist device (CF-LVAD) circulatory support. Evidence exists that appropriate pulsatility is required to maintain endothelial cell homeostasis. We hypothesized that coronary artery endothelial function would be impaired after CF-LVAD intervention. METHODS AND RESULTS: Coronary arteries from patients with end-stage heart failure caused by ischemic cardiomyopathy (ICM; n=16) or non-ICM (n=22) cardiomyopathy were isolated from the left ventricular apical core, which was removed for the CF-LVAD implantation. In 11 of these patients, paired coronary arteries were obtained from an adjacent region of myocardium after the CF-LVAD intervention (n=6 ICM, 5 non-ICM). Vascular function was assessed ex vivo using isometric tension procedures in these patients and in 7 nonfailing donor controls. Maximal endothelium-dependent vasorelaxation to BK (bradykinin; 10-6-10-10 M) was blunted (P<0.05) in arteries from patients with ICM compared with non-ICM and donor controls, whereas responses to sodium nitroprusside (10-4-10-9 M) were similar among the groups. Contrary to our hypothesis, vasorelaxation responses to BK and sodium nitroprusside were similar before and 219±37 days after CF-LVAD support. Of these patients, an exploratory subgroup analysis revealed that BK-induced coronary artery vasorelaxation was greater (P<0.05) after (87±6%) versus before (54±14%) CF-LVAD intervention in ICM patients, whereas sodium nitroprusside-evoked responses were similar. CONCLUSIONS: Coronary artery endothelial function is not impaired by durable CF-LVAD support and in ICM patients appears to be improved. Investigating coronary endothelial function using in vivo approaches in a larger patient population is warranted.


Assuntos
Cardiomiopatias/complicações , Vasos Coronários/fisiopatologia , Endotélio Vascular/fisiopatologia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Isquemia Miocárdica/complicações , Vasodilatação/fisiologia , Biópsia , Cardiomiopatias/fisiopatologia , Cardiomiopatias/terapia , Vasos Coronários/patologia , Ecocardiografia , Feminino , Seguimentos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/terapia , Miocárdio/patologia
20.
Sci Rep ; 9(1): 8981, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222088

RESUMO

Food-provisioning of wildlife can facilitate reliable up-close encounters desirable by tourists and, consequently, tour operators. Food-provisioning can alter the natural behavior of an animal, encouraging adverse behavior (e.g. begging for food handouts), and affect the reproductive success and the viability of a population. Studies linking food-provisioning to reproductive success are limited due to the lack of long-term datasets available, especially for long-lived species such as marine mammals. In Bunbury, Western Australia, a state-licensed food-provisioning program offers fish handouts to a limited number of free-ranging bottlenose dolphins (Tursiops aduncus). Coupled with long-term historical data, this small (<200 individuals), resident dolphin population has been extensively studied for over ten years, offering an opportunity to examine the effect of food-provisioning on the reproductive success of females (ntotal = 63; nprovisioned females = 8). Female reproductive success was estimated as the number of weaned calves produced per reproductive years and calf survival at year one and three years old was investigated. The mean reproductive success of provisioned and non-provisioned females was compared using Bayes factor. We also used generalized linear models (GLMs) to examine female reproductive success in relation to the occurrence of food-provisioning, begging behavior and location (within the study area). Furthermore, we examined the influence of these variables and birth order and climatic fluctuations (e.g. El Niño Southern Oscillation) on calf survival. Bayes factor analyses (Bayes factor = 6.12) and results from the best fitting GLMs showed that female reproductive success and calf survival were negatively influenced by food-provisioning. The negative effects of food-provisioning, although only affecting a small proportion of the adult females' population (13.2%), are of concern, especially given previous work showing that this population is declining.


Assuntos
Ração Animal , Animais Selvagens , Golfinho Nariz-de-Garrafa , Reprodução , Animais , Feminino , Humanos , Atividades de Lazer , Masculino , Fatores Sexuais , Taxa de Sobrevida , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...