Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 26(6): 964-974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38038643

RESUMO

Phytoremediation, including bacteria-assisted phytoremediation, presents a promising technology for treating shooting range soils contaminated with toxic metalloids. In this study, a pot experiment was performed using the halophyte Tamarix smyrnensis and soil collected from a shooting range and artificially spiked at two different antimonite (Sb(III)) concentrations (50 mg/kg and 250 mg/kg) with the aim to explore the Sb phytoremediation of the halophyte. The effect of salt (0.3%) and Mn addition (300 ppm) on its remediation capacity was also investigated. Moreover, the root endophytic community of the halophyte was found able to remove Sb(III) and was periodically inoculated to the plants. The consortium application increased the Sb bioavailable fraction in the soil and enhanced the Sb accumulation in root and aerial parts (up to 50% and 55% respectively at high Sb(III) concentration) compared to the uninoculated plants. Moreover, the presence of Mn increased the translocation factor (21% increase for inoculated and 46% increase for uninoculated plants) while lower TF was observed at high Sb concentrations (0,2 and 0,07 was the lowest value at low and high Sb treatments respectively). The addition of salt, Mn and root endophytic bacteria aided the halophyte to cope with elevated Sb concentrations. The total chlorophyll concentration was higher in inoculated plants compared to the uninoculated ones in all treatments, implying the positive effects of endophytic inoculation. The halophyte T. smyrnensis with the aid of endophytic community presents a promising alternative for remediating shooting range soils especially in areas impacted by salinity.


The halophyte T. smyrnensis presents a promising alternative for remediating shooting range soilsThe application of endophytic bacteria improved the Sb phytoremediation capacity of T. smyrnensisThe halophyte T. smyrnensis can be used for Sb phytoextraction in soils impacted by salinity.


Assuntos
Poluentes do Solo , Tamaricaceae , Plantas Tolerantes a Sal , Biodegradação Ambiental , Bactérias , Cloreto de Sódio/farmacologia , Solo , Poluentes do Solo/análise
2.
Water Res ; 246: 120687, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801984

RESUMO

Marine plastics, with their negative effects on marine life and the human health, have been recently recognized as a new niche for the colonization and development of marine biofilms. Members of the colonizing communities could possess the potential for plastic biodegradation. Thus, there is an urgent need to characterize these complex and geographically variable communities and elucidate the functionalities. In this work, we characterize the fungal and bacterial colonizers of 5 types of plastic films (High Density Polyethylene, Low Density Polyethylene, Polypropylene, Polystyrene and Polyethylene Terepthalate) over the course of a 242-day incubation in the south-eastern Mediterranean and relate them to the chemical changes observed on the surface of the samples via ATR-FTIR. The 16s rRNA and ITS2 ribosomal regions of the plastisphere communities were sequenced on four time points (35, 152, 202 and 242 days). The selection of the time points was dictated by the occurrence of a severe storm which removed biological fouling from the surface of the samples and initiated a second colonization period. The bacterial communities, dominated by Proteobacteria and Bacteroidetes, were the most variable and diverse. Fungal communities, characterized mainly by the presence of Ascomycota, were not significantly affected by the storm. Neither bacterial nor fungal community structure were related to the polymer type acting as substrate, while the surface of the plastic samples underwent weathering of oscillating degrees with time. This work examines the long-term development of Mediterranean epiplastic biofilms and is the first to examine how primary colonization influences the microbial community re-attachment and succession as a response to extreme weather events. Finally, it is one of the few studies to examine fungal communities, despite them containing putative plastic degraders.


Assuntos
Clima Extremo , Plásticos , Humanos , Água do Mar/microbiologia , RNA Ribossômico 16S , Polipropilenos , Polietileno , Bactérias/metabolismo
3.
J Hazard Mater ; 457: 131710, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37276696

RESUMO

The accumulation of plastic waste in the oceans has caused growing concern for its effects on marine life. The interactions of plastics with environmental factors have been linked to fragmentation to micro- and nanoparticles with different properties and consequences, but the mechanism of fragmentation has not been fully understood yet. In this work, we investigate the combined effect of marine communities and ultraviolet (UV) radiation towards the degradation of virgin and artificially weathered polypropylene (PP) pellets after a long-term incubation period in marine mesocosms. The surface chemical alterations and deterioration of the polymer, in conjunction with the attachment and evolution of marine bacterial communities, the development of biofilm and exopolymeric substances (EPS), as well as the colloidal properties (zeta-potential and hydrodynamic diameter) of the mesocosms were studied. The surface area of both types of pellets decreased over time, despite no concrete weight change being observed. Cell growth, EPS production and colloid particle size were correlated to the loss of area. Therefore, we propose that surface area could be effectively monitored, instead of weight loss, as an alternative indicator of polymer degradation in biodegradation experiments. Changes in the chemical structure of the polymer, in addition to the evolution of the biological factors, implied that a complex degradation process alternated between two phases: an abiotic phase, when UV irradiation contributes to the deterioration of the polymer surface layers and a biotic phase, when marine communities degrade the weathered polymer surface to reveal the underlying layer of virgin polymer. Finally, microscopic particles, produced as a result of the decrease in pellet area, promoted the aggregation of colloidal particles. The role and impacts of these colloidal particles in marine ecosystems are yet as unidentified as that of micro- and nano-sized plastic particles and call for further investigation.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Ecossistema , Poluentes Químicos da Água/química , Plásticos/química , Polímeros
4.
Environ Sci Technol ; 57(21): 8130-8138, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37194994

RESUMO

The durability of plastics in the marine environment has emerged as a crucial environmental issue. However, the contribution of several factors and the threshold point after which a plastic product generates secondary micro- and nanoplastics is still unclear. To investigate the interaction of environmental parameters with the physicochemical properties of polyethylene (PE) and polypropylene (PP) films in the marine environment, polyolefin films were subjected to weathering in emulated coastal and marine environments for 12 months, focusing on the relationship between radiation load, alteration on the surface, and subsequent generation of microplastics (MPs). The weight average molecular weight (Mw) was found to be strongly correlated with the generated particles and the Feret diameter, implying the generation of secondary microplastics at decreased Mw. A significant and strong relationship between the carbonyl index (CI) and the Feret diameter for PP films weathered on beach sand was identified. This CI-fragmentation relationship involves three sequential stages and suggests that spontaneous fragmentation occurs at CI values above 0.7.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/química , Microplásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos
5.
Environ Pollut ; 316(Pt 1): 120725, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427827

RESUMO

European marine waters are infested with plastic, with an average density of 1 plastic item in every four square-meters. Research relevant to MPs-NPs ingestion by wild decapods in European waters is limited, none of which regards the European spiny lobster. Totally 4102 plastic particles were extracted from the spiny lobster stomach tissues of both sexes. Out of the 63 samples analysed only three (4.8%) of them were found with no plastic particles. The range of number of MPs in stomachs was from 20 to 273 MPs individual-1. The 98.3% were fragments. In total 3833 plastic particles were extracted from the gill tissues of both sexes. MPs were found in all samples (n = 50),99.2% of the detected particles were fragments. The MPs detected in gills ranged from 11 to 339 MPs individual-1. The DLS method was used in order to evaluate the NPs presence. Nanoplastics were detected in 22.6% of stomachs and in the 48.1% of gills. A total of 43 polymer types were identified in both tissues. Also, our study assessed the accumulation of heavy metals at the edible tail muscle. Certain elements were detected above the EU's Maximum Residue Level, including arsenic. The present results are alarming and the potential human health implications could be serious.


Assuntos
Metais Pesados , Palinuridae , Poluentes Químicos da Água , Animais , Humanos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Grécia , Metais Pesados/análise , Plásticos
6.
Sci Total Environ ; 804: 150141, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509832

RESUMO

Microplastics (MPs) have been detected in atmosphere, soil, and water and have been characterized as contaminants of emerging concern. When exposed to these environments, MPs interact with the chemical compounds as well as the (micro)organisms inhabiting these ecosystems. This paper overviews the interactions and significant factors influencing the sorption process of antibiotics on MPs since distinct interactions are developed between MPs and antibiotics. The interplay between the MPs and the antibiotic resistant genes (ARGs) microbial hosts is presented and the important factors that may shape the plastisphere resistome are discussed. The interactions of MPs, antibiotics and antibiotic resistant bacteria (ARB) and ARGs in wastewater treatment plants (WWTPs) were discussed with the aim to provide a perspective for better understanding of the role of WWTPs in bringing together MPs, antibiotics and ARB/ARGs and further as release points of MPs carrying antibiotics, and ARB/ARGs.


Assuntos
Microplásticos , Purificação da Água , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ecossistema , Genes Bacterianos , Plásticos , Águas Residuárias
7.
Plants (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616220

RESUMO

Antimony (Sb) is considered to be a toxic metalloid of increasing prevalence in the environment. Although several phytoremediation studies have been conducted, research regarding the mechanisms of Sb accumulation and translocation within plants remains limited. In this study, soil from a shooting range was collected and spiked with an initial Sb(III) concentration of 50 mg/kg. A pot experiment was conducted to investigate whether Nerium oleander could accumulate Sb in the root and further translocate it to the aboveground tissue. Biostimulation of the soil was performed by the addition of organic acids (OAs), consisting of citric, ascorbic, and oxalic acid at low (7 mmol/kg) or high (70 mmol/kg) concentrations. The impact of irrigation with water supplemented with oxygen nanobubbles (O2NBs) was also investigated. The results demonstrate that there was a loss in plant growth in all treatments and the presence of OAs and O2NBs assisted the plant to maintain the water content at the level close to the control. The plant was not affected with regards to chlorophyll content in all treatments, while the antioxidant enzyme activity of guaiacol peroxidase (GPOD) in the roots was found to be significantly higher in the presence of Sb. Results revealed that Sb accumulation was greater in the treatment with the highest OAs concentration, with a bioconcentration factor greater than 1.0. The translocation of Sb for every treatment was very low, confirming that N. oleander plant cannot transfer Sb from the root to the shoots. A higher amount of Sb was accumulated in the plants that were irrigated with the O2NBs, although the translocation of Sb was not increased. The present study provides evidence for the phytoremediation capacity of N. oleander to bioaccumulate Sb when assisted by biostimulation with OAs.

8.
Sci Total Environ ; 793: 148526, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175606

RESUMO

Plastic pollution is presently one of the most widespread and minimally understood problems. Vast quantities of plastics that have entered the marine environment should be detected floating on the sea surface are seemingly missing from the global budget. A vertical transfer process should be able to explain the imbalance in mass, as well as the findings of buoyant plastics at the bottom of the sea. These processes are of paramount importance to modelling efforts on the fate of plastics and microplastics in the marine environment. In order to fill this gap and develop correlations that could be used in modelling activities, we have designed and performed a 300-day long field experiment to monitor the interactions between microplastics (pellets and films) and the marine environment for five types of plastic polymers. Fouling, changes in diameter, gravimetric weight and sinking velocity were monitored and the correlations between them were studied using principal component analysis (PCA). Density, fouling and sample form (strip or pellet) were found to greatly affect the sinking characteristics of the polymers, leading to an increase or decrease in the sinking velocity. Finally, mathematical expressions for the estimation of fouling attachment and the sinking velocity with respect to time for each type of plastic were determined from the experimental data.


Assuntos
Microplásticos , Poluentes Químicos da Água , Poluição Ambiental , Plásticos , Poluentes Químicos da Água/análise
9.
Microorganisms ; 7(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554215

RESUMO

The microbiome associated with plants used in phytodepuration systems can boost plant growth and services, especially in ecosystems dealing with recalcitrant compounds, hardly removed via traditional wastewater (WW) treatments, such as azo-dyes used in textile industry. In this context, we aimed to study the cultivable microbiome selected by Phragmites australis plants in a Constructed Wetland (CW) in Morocco, in order to obtain candidate inoculants for the phytodepuration of azo-dye contaminated WW. A collection of 152 rhizospheric and endophytic bacteria was established. The strains were phylogenetically identified and characterized for traits of interest in the phytodepuration context. All strains showed Plant Growth Promotion potential in vitro and 67% of them significantly improved the growth of a model plant in vivo compared to the non bacterized control plants. Moreover, most of the isolates were able to grow in presence of several model micropollutants typically found in WW, indicating their potential use in phytodepuration of a wide spectrum of effluents. The six most promising strains of the collection were tested in CW microcosms alone or as consortium: the consortium and two single inocula demonstrated to significantly increase the removal of the model azo-dye Reactive Black 5 compared to the non bacterized controls.

10.
J Hazard Mater ; 375: 33-42, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31039462

RESUMO

This work sheds light on the physicochemical changes of naturally weathered polymer surfaces along with changes of polymer buoyancy due to biofilm formation and degradation processes. To support the degradation hypothesis, a microcosm experiment was conducted where a mixture of naturally weathered plastic pieces was incubated with an indigenous pelagic community. A series of analyses were employed in order to describe the alteration of the physicochemical characteristics of the polymer (FTIR, SEC and GPC, sinking velocity) as well as the biofilm community (NGS). At the end of phase II, the fraction of double bonds in the surface of microbially treated PE films increased while changes were also observed in the profile of the PS films. The molecular weight of PE pieces increased with incubation time reaching the molecular weight of the virgin pieces (230,000 g mol-1) at month 5 but the buoyancy displayed no difference throughout the experimental period. The number-average molecular weight of PS pieces decreased (33% and 27% in INDG and BIOG treatment respectively), implying chain scission; accelerated (by more than 30%) sinking velocities compared to the initial weathered pieces were also measured for PS films with biofilm on their surface. The orders Rhodobacterales, Oceanospirillales and Burkholderiales dominated the distinct platisphere communities and the genera Bacillus and Pseudonocardia discriminate these assemblages from the planktonic counterpart. The functional analysis predicts overrepresentation of adhesive cells carrying xenobiotic and hydrocarbon degradation genes. Taking these into account, we can suggest that tailored marine consortia have the ability to thrive in the presence of mixtures of plastics and participate in their degradation.


Assuntos
Consórcios Microbianos/fisiologia , Polietileno/metabolismo , Poliestirenos/metabolismo , Água do Mar/microbiologia , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biodegradação Ambiental , Biofilmes , Plâncton/fisiologia , Polietileno/química , Poliestirenos/química , RNA Ribossômico 16S , Microbiologia da Água
11.
Front Plant Sci ; 9: 1526, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405664

RESUMO

Plants and their associated bacteria play a crucial role in constructed wetlands. In this study, the impact of different levels of pollution and bioaugmentation with indigenous strains individually or in consortia was investigated on the composition of the endophytic microbial communities of Juncus acutus. Five treatments were examined and compared in where the wetland plant was exposed to increasing levels of metal pollution (Zn, Ni, Cd) and emerging pollutants (BPA, SMX, CIP), enriched with different combinations of single or mixed endophytic strains. High levels of mixed pollution had a negative effect on alpha diversity indices of the root communities; moreover, the diversity indices were negatively correlated with the increasing metal concentrations. It was demonstrated that the root communities were separated depending on the level of mixed pollution, while the family Sphingomonadaceae exhibited the higher relative abundance within the root endophytic communities from high and low polluted treatments. This study highlights the effects of pollution and inoculation on phytoremediation efficiency based on a better understanding of the plant microbiome community composition.

12.
Sci Rep ; 7(1): 17991, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269847

RESUMO

A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associated assemblages while the abundance of plastic associated genera was significantly increased in the acclimated indigenous communities. Both tailored consortia efficiently reduced the weight of PS films. Concerning the molecular weight distribution, a decrease in the number-average molecular weight of films subjected to microbial treatment was observed. Moreover, alteration in the intensity of functional groups was noticed with Fourier transform infrared spectrophotometry (FTIR) along with signs of bio-erosion on the PS surface. The results suggest that acclimated marine populations are capable of degrading weathered PS pieces.

13.
PLoS One ; 12(8): e0183984, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841722

RESUMO

This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics.


Assuntos
Bactérias/metabolismo , Polietileno/metabolismo , Água do Mar/microbiologia , Microbiologia da Água , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes , Metagenoma , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier
14.
N Biotechnol ; 38(Pt B): 43-55, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28040555

RESUMO

Helophytic plants contribute significantly to the remediation of ecosystems through a wide range of physiological or biochemical mechanisms including the role of endophytic bacteria. This review highlights the services provided by Juncus spp. wetland plants, from phytoremediation of soils and groundwater with heavy metals and/or organics to municipal or industrial wastewater treatment in constructed wetlands. The data presented also provide information on the efficiency of specific Juncus spp. in response to various metals and organic compounds, in an effort to exploit the natural capabilities of autochthonous over exotic species in phytoremediation strategies. An overall successful direct (the plant itself) or indirect (through stimulation of elimination mechanisms) contribution of Juncus to remediation of the above contaminants is revealed. However, the specific characteristics of the species used, the type of the pollutant and the region, are issues that should be addressed for a successful outcome.


Assuntos
Água Subterrânea , Magnoliopsida/crescimento & desenvolvimento , Solo , Áreas Alagadas , Biodegradação Ambiental
15.
J Hazard Mater ; 323(Pt A): 350-358, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27321745

RESUMO

A phytoremediation pilot emulating a shallow aquifer planted with Juncus acutus showed to be effective for remediating Bisphenol-A (BPA) contaminated groundwater. Biostimulation with root exudates, low molecular weight organic acids, of J. acutus did not improve BPA-degradation rates. Furthermore, the endophytic bacterial community of J. acutus was isolated and characterized. Many strains were found to possess increased tolerance to metals such as Zn, Ni, Pb and Cd. Moreover, several endophytic bacterial strains tolerated and even used BPA and/or two antibiotics (ciprofloxacin and sulfamethoxazole) as a sole carbon source. Our results demonstrate that the cultivable bacterial endophytic community of J. acutus is able to use organic contaminants as carbon sources, tolerates metals and is equipped with plant-growth promoting traits. Therefore, J. acutus has potential to be exploited in constructed wetlands when co-contamination is one of the restricting factors.


Assuntos
Compostos Benzidrílicos/química , Recuperação e Remediação Ambiental/métodos , Fenóis/química , Plantas Tolerantes a Sal/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Compostos Benzidrílicos/metabolismo , Ciprofloxacina/química , Resíduos de Drogas , Endófitos , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Genótipo , Metais/farmacologia , Fenóis/metabolismo , Projetos Piloto , Raízes de Plantas/química , Plantas Tolerantes a Sal/genética , Sulfametoxazol/química , Áreas Alagadas
16.
Environ Res ; 152: 96-101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27764685

RESUMO

A methodology was developed to assess the impact of geogenic origin hexavalent chromium uptake by carrots, and the risk of human consumption of carrots grown in Asopos River basin in Greece. A field scale experiment was conducted with carrots cultivated in treatment plots, with and without compost amendment, in order to assess the impact of carbon in the mobility and uptake of chromium by plants. The results suggested that there is a trend for chromium mobilization and uptake in the surface and the leaves of the carrots cultivated in the treatment plot with the higher carbon addition, but not in the core of the carrots. Limited mobility of hexavalent chromium in the soil-plant-water system is presented due to the affinity of chromium to be retained in the solid phase and be uptaken by plants. Hexavalent chromium tolerant bacterial strains were isolated from the carrots. These endophytic bacteria, present in all parts of the plant, were able to reduce hexavalent chromium to trivalent form to levels below the detection limit. Finally, a site-specific risk assessment analysis suggested no adverse effects to human health due to the consumption of carrots. These findings are of particular importance since they confirm that carrots grown in soils with geogenic origin chromium does not pose any adverse risk for human consumption, but could also have the beneficial effect of the micronutrient trivalent chromium.


Assuntos
Cromo/metabolismo , Daucus carota/metabolismo , Exposição Ambiental , Monitoramento Ambiental/métodos , Contaminação de Alimentos , Poluentes do Solo/metabolismo , Grécia , Humanos , Medição de Risco/métodos
17.
Front Microbiol ; 7: 1016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458433

RESUMO

This study investigated the potential of indigenous endophytic bacteria to improve the efficiency of the wetland helophyte Juncus acutus to deal with a mixed pollution consisting of emerging organic contaminants (EOCs) and metals. The beneficial effect of bioaugmentation with selected endophytic bacteria was more prominent in case of high contamination: most of the inoculated plants (especially those inoculated with the mixed culture) removed higher percentages of organics and metals from the liquid phase in shorter times compared to the non-inoculated plants without exhibiting significant oxidative stress. When exposed to the lower concentrations, the tailored mixed culture enhanced the performance of the plants to decrease the organics and metals from the water. The composition of the root endophytic community changed in response to increased levels of contaminants while the inoculated bacteria did not modify the community structure. Our results indicate that the synergistic relationships between endophytes and the macrophyte enhance plants' performance and may be exploited in constructed wetlands treating water with mixed contaminations. Taking into account that the concentrations of EOCs used in this study are much higher than the average contents of typical wastewaters, we can conclude that the macrophyte J. acutus with the aid of a mixed culture of tailored endophytic bacteria represents a suitable environmentally friendly alternative for treating pharmaceuticals and metals.

18.
J Hazard Mater ; 281: 114-120, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25160056

RESUMO

A constructed wetland pilot with Juncus acutus L. plants was investigated for its rhizofiltration efficiency in treating Cr(VI)-contaminated groundwater. Measurements of Cr(VI) and total Cr were performed to estimate the rate of removal. In addition, Cr concentration in plant tissues was measured and the role of endophytic bacteria on plant's tolerance to Cr(VI) toxicity was investigated. The results support that J. acutus is able to rhizofiltrate Cr(VI) from contaminated water with up to 140µg/L while Cr content analysis in plant tissues revealed that the majority of Cr was accumulated by the plants. Moreover, two leaf (Acidovorax sp. strain U3 and Ralstonia sp. strain U36) isolated endophytic bacteria were found to tolerated 100mg/L Cr(VI) while nine root isolates showed resistance to 500mg/L Cr(VI). The endophytic bacteria Pseudomonas sp. strain R16 and Ochrobactrum sp. strain R24 were chosen for Cr(VI) reduction assays. All four strains exhibited a strong potential to reduce Cr(VI) to Cr(III) aerobically. Among them Pseudomonas sp. strain R16 was found able to completely reduced 100mg/L Cr(VI) after 150h of incubation. These results suggest that J. acutus is an excellent choice for CWs whose function is the removal of Cr(VI) from contaminated groundwater for subsequent use in crop irrigation.


Assuntos
Bactérias/metabolismo , Cromo/metabolismo , Magnoliopsida/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Cromo/análise , DNA Bacteriano/análise , Filtração , Água Subterrânea/análise , Magnoliopsida/metabolismo , Folhas de Planta/metabolismo , RNA Ribossômico 16S/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...