Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955214

RESUMO

An attempt to reduce, replace, or even eliminate the synthetic resins from wood-based panels alongside broadening the array of raw lignocellulosics is still essential and attractive. Many pretreatments of lignocellulosics have been studied, among which steam explosion (SE) resulted in superior physical-mechanical properties of the obtained binder-less boards. However, the SE pretreatment leads to a relatively strong odor, which is even emitted from the obtained binder-less boards independent of the raw lignocellulosic, raising concern about the use of the boards. Emissions of volatile organic compounds (VOCs) were investigated in the framework of the study from binder-less boards obtained from different SE raw lignocellulosics and SE-untreated suberinic acids-bonded particleboard. VOCs were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS) for 28 days with an interval of 2 weeks. The results showed that the number of detected VOCs and their chromatographic peak area varied significantly depending on the raw lignocellulosic, board density, and post-treatment (overlayering), decreasing over time. The lowest area of detected VOCs was demonstrated by the suberinic acids-bonded particleboard, while the highest area was detected from the high-density binder-less board obtained from SE hemp shives with the main compound of furfural (up to 70%) in all board types.

2.
Foods ; 11(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35954089

RESUMO

Cranberry pomace obtained after juice production is a good source of dietary fiber and other bioactive compounds. In this study, cranberry pomace was hydrolyzed with Viscozyme® L, Pectinex® Ultra Tropical, Pectinex® Yieldmash Plus, and Celluclast® 1.5L (Novozyme A/S, Denmark). The soluble and insoluble dietary fiber was determined using the Megazyme kit, while the changes in mono-, disaccharide and oligosaccharides' contents were determined using HPLC-RI; the total phenolic contents were determined by Folin-Ciocalteu's Assay. Prebiotic activity, using two probiotic strains Lactobacillus acidophilus DSM 20079 and Bifidobacterium animalis DSM 20105, was investigated. The technological properties, such as hydration and oil retention capacity, were evaluated. The enzymatic treatment increased the yield of short-chain soluble saccharides. The highest oligosaccharide content was obtained using Viscozyme® L and Pectinex® Ultra Tropical. All of the tested extracts of cranberry pomace showed the ability to promote growth of selected probiotic bacteria. The insoluble dietary fiber content decreased in all of the samples, while the soluble dietary fiber increased just in samples hydrolyzed with Celluclast® 1.5L. The highest content of total phenolic compounds was obtained using Viscozyme® L and Pectinex® Ultra Tropical (10.9% and 13.1% higher than control, respectively). The enzymatically treated cranberry pomace exhibited lower oil and water retention capacities in most cases. In contrast, water swelling capacity increased by 23% and 70% in samples treated with Viscozyme® L and Celluclast® 1.5L, respectively. Enzymatically treated cranberry pomace has a different composition and technological properties depending on the enzyme used for hydrolysis and can be used in various novel food products.

3.
Crit Rev Biotechnol ; 42(3): 342-360, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34412525

RESUMO

Lactic acid is an important platform chemical used in the food, agriculture, cosmetic, pharmaceutical, and chemical industries. It serves as a building block for the production of polylactic acid (PLA), a biodegradable polymer, which can replace traditional petroleum-based plastics and help to reduce environmental pollution. Cost-effective production of optically pure l- and d-lactic acids is necessary to achieve a quality and thermostable PLA product. This paper evaluates research advances in the bioproduction of l- and d-lactic acids using microbial fermentation. Special emphasis is given to the development of metabolically engineered microbial strains and processes tailored to alternative and flexible feedstock concepts such as: lignocellulose, glycerol, C1-gases, and agricultural-food industry byproducts. Alternative fermentation concepts that can improve lactic acid production are discussed. The potential use of inducible gene expression systems for the development of biosensors to facilitate the screening and engineering of lactic acid-producing microorganisms is discussed.


Assuntos
Ácido Láctico , Poliésteres , Fermentação , Glicerol , Engenharia Metabólica , Poliésteres/metabolismo , Polímeros/metabolismo
4.
Antioxidants (Basel) ; 10(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204047

RESUMO

The article presents the optimization of supercritical CO2 extraction (SFE-CO2) parameters using response surface methodology (RSM) with central composite design (CCD) in order to produce single variety hop (cv. Ella) extracts with high yield and strong in vitro antioxidant properties. Optimized SFE-CO2 (37 MPa, 43 °C, 80 min) yielded 26.3 g/100 g pellets of lipophilic fraction. This extract was rich in biologically active α- and ß-bitter acids (522.8 and 345.0 mg/g extract, respectively), and exerted 1481 mg TE/g extract in vitro oxygen radical absorbance capacity (ORAC). Up to ~3-fold higher extraction yield, antioxidant recovery (389.8 mg TE/g pellets) and exhaustive bitter acid extraction (228.4 mg/g pellets) were achieved under the significantly shorter time compared to the commercially used one-stage SFE-CO2 at 10-15 MPa and 40 °C. Total carotenoid and chlorophyll content was negligible, amounting to <0.04% of the total extract mass. Fruity, herbal, spicy and woody odor of extracts could be attributed to the major identified volatiles, namely ß-pinene, ß-myrcene, ß-humulene, α-humulene, α-selinene and methyl-4-decenoate. Rich in valuable bioactive constituents and flavor compounds, cv. Ella hop SFE-CO2 extracts could find multipurpose applications in food, pharmaceutical, nutraceutical and cosmetics industries.

5.
Antioxidants (Basel) ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068178

RESUMO

Bilberry (Vaccinium myrtillus L.) pomace contains a significant amount of polyphenols and can serve as a basis for food additives, nutraceuticals, and functional foods. Although various techniques can be employed to recover bioactive fractions from berry pomaces, data on enzyme-assisted extraction (EAE) of bilberry pomace are rather scarce. This study aimed to optimize critical EAE parameters using Viscozyme L to obtain a high-yield extract with enhanced antioxidant capacity. Central composite design and response surface methodology evaluating the effect of four independent variables, namely, pH, temperature, extraction time, and enzyme concentration on three responses, were employed to define optimal EAE conditions. Under the optimal conditions (pH: 4.5, temperature 46 °C, 1 h of extraction, and 2 active units (AU) of Viscozyme L/g of pomace), EAE yielded 56.15 g/100 g DW of the water-soluble fraction. Comparison with conventional maceration indicated that EAE, besides the yield, significantly increased the in vitro antioxidant capacity measured by the total phenolic content, ABTS, ORAC, and CUPRAC assays. Moreover, an increase was observed for the measured mono- and disaccharide as well as anthocyanin content. Overall, this study demonstrates the improved efficiency of EAE over conventional solid-liquid extraction to recover fractions with a higher yield and enhanced functional properties in a fast and sustainable manner.

6.
J Texture Stud ; 52(4): 520-533, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34076280

RESUMO

Lipophilic sea buckthorn pomace extract isolated by supercritical CO2 (LSBPE) was structurized with different amounts of carnauba wax or beeswax as oleogelators. Oleogels were also made with added water at an LSBPE:water ratio of 70:30. LSBPE was characterized by a favorable ratio of omega-6 to omega-3 fatty acids (1:3) and reasonable amounts of omega-7 fatty acids (4.45% of total), tocopherols (63.0 mg/100 g) and carotenoids (700.1 mg/100 g). The oleogels were characterized by their structural and rheological properties, and physical and chemical stability during storage. Carnauba wax produced a gel-like structure with a highly condensed network of aggregated crystals, while beeswax oleogels displayed elongated crystals which formed interconnected networks. Carnauba wax gels were harder than beeswax gels with better oil-binding capacity and higher crystallization and melting temperatures. Both oleogels showed good physical and oxidative stability during storage due to the immobilization of oil in the three-dimensional structures, and the presence of strong lipophilic antioxidants in LSBPE, respectively. As the proportion of waxes increased from 5 to 17.5%, the hardness, oil-binding capacity, crystallization, and melting temperatures increased in both gels due to the more developed crystalline associations. Addition of water had no significant effect on the physical and chemical stability of oleogels during storage. Water was distributed as small droplets in the crystalline network of oleogelators. However, hardness and oil-binding capacity decreased as water was added. Rich in polyunsaturated fatty acids and bioactive compounds, LSBPE oleogels offer the opportunity to deliver bioactives while simultaneously acting as fat substitutes.


Assuntos
Substitutos da Gordura , Hippophae , Dióxido de Carbono , Compostos Orgânicos , Extratos Vegetais
7.
Biomolecules ; 10(6)2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517243

RESUMO

Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.


Assuntos
Biotecnologia , Hidroxibenzoatos , Hidroxibenzoatos/análise , Hidroxibenzoatos/metabolismo , Estrutura Molecular
8.
Antioxidants (Basel) ; 9(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466350

RESUMO

Dasiphora fruticosa (basionym Potentilla fruticosa) is a shrub, known in traditional medicine for centuries. Due to the wide range of pharmacological effects, interest and applications of D. fruticosa extracts are continually increasing; however, reports on optimization of extraction conditions are scarce. Herein, a multi-step high-pressure extraction process with increasing polarity solvents was developed to isolate valuable fractions from D. fruticosa leaves. Supercritical CO2 extraction recovered 2.46 g/100 g of lipophilic fraction, rich in polyunsaturated fatty acids. Further, pressurized liquid extractions (PLE) with acetone, ethanol, and water were applied to obtain antioxidant-rich higher polarity extracts. Under optimized PLE conditions, the cumulative polar fraction yield was 29.98 g/100 g. Ethanol fraction showed the highest yield (15.3 g/100 g), TPC values (148.4 mg GAE/g), ABTS•+, and DPPH• scavenging capacity (161.1 and 151.8 mg TE/g, respectively). PLE was more efficient than conventional solid-liquid extraction in terms of extraction time, extract yields, and in vitro antioxidant capacity. Phytochemical characterization of PLE extracts by UPLC-Q-TOF-MS revealed the presence of hyperoside, ellagic acid, among other health beneficial phenolic substances. Τhis study highlights the potential of high-pressure extraction techniques to isolate antioxidant-rich fractions from D. fruticosa leaves with multipurpose applications, including the prevention and treatment of chronic diseases.

9.
Food Chem ; 322: 126767, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32330787

RESUMO

Due to the lack of innovative valorization strategies, berry pomaces are a poorly utilized as a cheap source of valuable nutrients and phytochemicals. An effective biorefining scheme was developed to recover functional components from lingonberry pomace by consecutive supercritical CO2 (SFE-CO2), pressurized liquid (PLE) and enzyme assisted (EAE) extractions. SFE-CO2 at optimized parameters yielded 11.8 g/100 g of lipophilic fraction, containing 43.3 and 37.4% of α-linolenic and linoleic fatty acids, respectively. The combined PLE with ethanol and water additionally recovered 61.8 g/100 g of polar constituents and reduced the antioxidant capacity of starting material by up to 94%. The major portion of the antioxidants (89-94% in different assays), anthocyanins (231 mg/100 g pomace) and proanthocyanidins (15.9 g/100 g pomace) was present in PLE-EtOH extract. Cyanidin-3-galactoside was the major anthocyanin (146.9 mg/100 g). High-pressure fractionation was more efficient for obtaining bioactive pomace constituents as compared with conventional and enzyme-assisted extractions.


Assuntos
Fracionamento Químico/métodos , Solventes/química , Vaccinium vitis-Idaea , Gerenciamento de Resíduos/métodos , Antocianinas/análise , Antocianinas/química , Antioxidantes/análise , Antioxidantes/química , Dióxido de Carbono/química , Etanol/química , Frutas/química , Galactosídeos/análise , Galactosídeos/química , Química Verde , Resíduos Industriais , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Pressão , Proantocianidinas/análise , Proantocianidinas/química , Água
10.
Food Chem ; 312: 126072, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31893552

RESUMO

In this study supercritical carbon dioxide (SFE-CO2) and pressurized liquid (PLE) extractions were optimized for the recovery of valuable fractions from blackberry pomace. Consecutively applied SFE-CO2 and PLE at optimized parameters yielded 9.9, 26.3 and 5.1 g/100 g of CO2, ethanol (EtOH) and water-soluble extracts, respectively. Oil of lipophilic fraction was composed mainly of healthy polyunsaturated fatty acids (linoleic 64.1%, α-linolenic 12.9%), while polar solvents effectively recovered antioxidants (up to 29.1 mg gallic acid and 168.7 mg Trolox equivalents from g pomace). PLE-EtOH extract contained 12.2 mg/g of cyanidin-3-glucoside, while other anthocyanins were detected in significantly lower quantities (0.5-0.7 mg/g). SFE-CO2 and PLE reduced the antioxidant capacity of starting plant material by 86-93%. In terms of extraction time, solvent consumption, total yields, and phytochemical characteristics, high-pressure fractionation was more efficient for obtaining valuable pomace constituents as compared to conventional and enzyme-assisted extractions.


Assuntos
Rubus/química , Antocianinas/química , Antioxidantes/química , Fracionamento Químico , Glucosídeos/química , Compostos Fitoquímicos/química , Pressão , Solventes/química
11.
J Agric Food Chem ; 68(7): 1896-1909, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31589437

RESUMO

Cyanobacteria are photosynthetic microorganisms that are considered as an important source of bioactive metabolites, among which phycobiliproteins (PBPs) are a class of water-soluble macromolecules of cyanobacteria with a wide range of applications. Massive proliferation of cyanobacteria can lead to excessive surface water blooms, of which removal, as a management measure, should be prioritized. In this study, the utilization of wild cyanobacteria biomass (Aphanizomenon flos-aquae) for extraction of phycobiliproteins is reported. Extraction of phycobiliproteins by conventional methods, such as homogenization, freeze-thaw cycles, and solid-liquid extraction, were optimized prior to ultrasound-assisted extraction. Standardization of ultrasonication for different parameters, such as ultrasonication amplitude (38, 114, and 190 µm) and ultrasonication time (1, 5.5, and 10 min), was carried out using a central composite design and response surface methodology for each of the primary techniques. A substantial increase on the individual and total phycobiliprotein yields was observed after ultrasonic treatment. The highest total PBP yield (115.37 mg/g of dry weight) was observed with samples treated with a homogenizer (30 min, 30 °C, and 1 cycle) combined with ultrasound treatment (8.7 min at 179 µm). Moreover, in vitro antioxidant capacity was observed for the obtained extracts in the Folin-Ciocalteu and ABTS* + assays. In addition, a cytotoxic effect against C6 glioma cells was observed for A. flos-aquae PBPs. Conclusively, wild cyanobacteria could be considered as an alternative feedstock for recovery of PBPs.


Assuntos
Aphanizomenon/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Ficobiliproteínas/isolamento & purificação , Ficobiliproteínas/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Aphanizomenon/crescimento & desenvolvimento , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ficobiliproteínas/química , Ultrassom
12.
ACS Chem Biol ; 14(2): 198-203, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30694649

RESUMO

Marine bacteria contribute substantially to nutrient cycling in the oceans and can engage in close interactions with microalgae. Many microalgae harbor characteristic satellite bacteria, many of which participate in N-acyl homoserine lactone (AHL) mediated quorum sensing. In the diffusion-controlled phycosphere, AHLs can reach high local concentrations, with some of them transforming into tetramic acids, compounds with a broad bioactivity. We tested a representative AHL, N-(3-oxododecanoyl) homoserine lactone, and its tetramic acid rearrangement product on the diatom Phaeodactylum tricornutum. While cell growth and photosynthetic efficiency of photosystem II were barely affected by the AHL, exposure to its tetramic acid rearrangement product had a negative effect on photosynthetic efficiency and led to growth inhibition and cell death in the long term, with a minimum inhibitory concentration between 20 and 50 µΜ. These results strengthen the view that AHLs may play an important role in shaping the outcome of microalgae-bacteria interactions.


Assuntos
4-Butirolactona/análogos & derivados , Diatomáceas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pirrolidinonas/farmacologia , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia
14.
Beilstein J Org Chem ; 10: 2539-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383125

RESUMO

Novel N-α-haloacylated homoserine lactones, in which a halogen atom was introduced at the α-position of the carbonyl function of the N-acyl chain, have been studied as quorum sensing (QS) modulators and compared with a library of natural N-acylated homoserine lactones (AHLs). The series of novel analogues consists of α-chloro, α-bromo and α-iodo AHL analogues. Furthermore, the biological QS activity of the synthetic AHL analogues compared to the natural AHLs was evaluated. Halogenated analogues demonstrated a reduced activity in the Escherichia coli JB523 bioassay, with the α-iodo lactones being the less active ones and the α-chloro AHLs the most potent QS agonists. Most of the α-haloacylated analogues did not exhibit a significant reduction when tested in the QS inhibition test. Therefore, these novel analogues could be utilized as chemical probes for QS structure-activity studies.

15.
Mar Drugs ; 12(1): 352-67, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24445305

RESUMO

Diatoms are known to produce a variety of halogenated compounds, which were recently shown to have a role in allelopathic interactions between competing species. The production of these compounds is linked to haloperoxidase activity. This research, has shown that this system may also be involved in diatom-bacteria interactions via the H2O2 dependent inactivation of a type of quorum sensing (QS) molecule, i.e., N-ß-ketoacylated homoserine lactones (AHLs), by a natural haloperoxidase system from the benthic diatom Nitzschia cf pellucida. The AHL degradation pathway towards corresponding halogenated derivatives was elucidated via HPLC-MS analysis and the synthesis of a broad series of novel halogenated AHL analogues as reference compounds. Furthermore, their biological activity as quorum sensing modulators was directly compared and evaluated against a series of naturally occurring ß-keto-AHLs. It has been demonstrated that the loss of the QS activity results from the final cleavage of the halogenated N-acyl chain of the signal molecules.


Assuntos
Diatomáceas/química , Diatomáceas/metabolismo , Homosserina/metabolismo , Lactonas/metabolismo , Peroxidases/química , Percepção de Quorum/efeitos dos fármacos , Bioensaio , Catalase/química , Cromatografia Líquida de Alta Pressão , Chromobacterium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Lactonas/síntese química , Extração Líquido-Líquido , Espectrometria de Massas , Fenolsulfonaftaleína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...