Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; : 100168, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098589

RESUMO

Supportive robotic solutions take over mundane, but essential tasks from human workforce in biomedical research and development laboratories. The newest technologies in collaborative and mobile robotics enable the utilization in the human-centered and low-structured environment. Their adaptability, however, is hindered by the additional complexity that they introduce. In our paper we aim to entangle the convoluted laboratory robot integration architectures. We begin by hierarchically decomposing the laboratory workflows, and mapping the activity representations to layers and components of the automation control architecture. We elaborate the framework in detail on the example of pick-and-place labware transportation - a crucial supportive step, which we identified as the number one area of interest among experts of the field. Our concept proposal serves as a reference architecture model, the key principles of which were used in reference implementations, and are in line with international standardization efforts.

3.
SLAS Technol ; 28(2): 82-88, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36646253

RESUMO

The Laboratory Automation Plug & Play (LAPP) framework is an over-arching reference architecture concept for the integration of robots in life science laboratories. The plug & play nature lies in the fact that manual configuration is not required, including the teaching of the robots. In this paper a digital twin (DT) based concept is proposed that outlines the types of information that must be provided for each relevant component of the system. In particular, for the devices interfacing with the robot, the robot positions must be defined beforehand in a device-attached coordinate system (CS) by the vendor. This CS must be detectable by the vision system of the robot by means of optical markers placed on the front side of the device. With that, the robot is capable of tending the machine by performing the pick-and-place type transportation of standard sample carriers. This basic use case is the primary scope of the LAPP-DT framework. The hardware scope is limited to simple benchtop and mobile manipulators with parallel grippers at this stage. This paper first provides an overview of relevant literature and state-of-the-art solutions, after which it outlines the framework on the conceptual level, followed by the specification of the relevant DT parameters for the robot, for the devices and for the facility. Finally, appropriate technologies and strategies are identified for the implementation.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Automação Laboratorial , Software , Laboratórios
4.
SLAS Technol ; 27(1): 18-25, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058216

RESUMO

Increasing the level of automation in pharmaceutical laboratories and production facilities plays a crucial role in delivering medicine to patients. However, the particular requirements of this field make it challenging to adapt cutting-edge technologies present in other industries. This article provides an overview of relevant approaches and how they can be utilized in the pharmaceutical industry, especially in development laboratories. Recent advancements include the application of flexible mobile manipulators capable of handling complex tasks. However, integrating devices from many different vendors into an end-to-end automation system is complicated due to the diversity of interfaces. Therefore, various approaches for standardization are considered in this article, and a concept is proposed for taking them a step further. This concept enables a mobile manipulator with a vision system to "learn" the pose of each device and - utilizing a barcode - fetch interface information from a universal cloud database. This information includes control and communication protocol definitions and a representation of robot actions needed to operate the device. In order to define the movements in relation to the device, devices have to feature - besides the barcode - a fiducial marker as standard. The concept will be elaborated following appropriate research activities in follow-up papers.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Automação Laboratorial , Humanos , Laboratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA