Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428158

RESUMO

Mitochondria are important sources of energy in plants and are implicated in coordination of a number of metabolic and physiological processes including stabilization of redox balance, synthesis and turnover of a number of metabolites, and control of programmed cell death. Mitochondrial electron transport chain (mETC) is the backbone of the energy producing process which can influence other processes as well. Accumulating evidence suggests that mETC can affect responses to environmental stimuli and modulate tolerance to extreme conditions such as drought or salinity. Screening for stress responses of 13 Arabidopsis mitochondria-related T-DNA insertion mutants, we identified ndufs8.2-1 which has an increased ability to withstand osmotic and oxidative stresses compared to wild type plants. Insertion in ndufs8.2-1 disrupted the gene that encodes the NADH dehydrogenase [ubiquinone] fragment S subunit 8 (NDUFS8) a component of Complex I of mETC. ndufs8.2-1 tolerated reduced water availability, retained photosynthetic activity and recovered from severe water stress with higher efficiency compared to wild type plants. Several mitochondrial functions were altered in the mutant including oxygen consumption, ROS production, ATP and ADP content as well as activities of genes encoding alternative oxidase 1A (AOX1A) and various alternative NAD(P)H dehydrogenases (ND). Our results suggest that in the absence of NDUFS8.2 stress-induced ROS generation is restrained leading to reduced oxidative damage and improved tolerance to water deficiency. mETC components can be implicated in redox and energy homeostasis and modulate responses to stresses associated with reduced water availability.


Assuntos
Arabidopsis , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Arabidopsis/metabolismo , Fotossíntese , Regulação da Expressão Gênica de Plantas
2.
Planta ; 259(4): 78, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427069

RESUMO

MAIN CONCLUSION: The Arabidopsis Pentatricopeptide repeat 40 (PPR40) insertion mutants have increased tolerance to water deficit compared to wild-type plants. Tolerance is likely the consequence of ABA hypersensitivity of the mutants. Plant growth and development depend on multiple environmental factors whose alterations can disrupt plant homeostasis and trigger complex molecular and physiological responses. Water deficit is one of the factors which can seriously restrict plant growth and viability. Mitochondria play an important role in cellular metabolism, energy production, and redox homeostasis. During drought and salinity stress, mitochondrial dysfunction can lead to ROS overproduction and oxidative stress, affecting plant growth and survival. Alternative oxidases (AOXs) and stabilization of mitochondrial electron transport chain help mitigate ROS damage. The mitochondrial Pentatricopeptide repeat 40 (PPR40) protein was implicated in stress regulation as ppr40 mutants were found to be hypersensitive to ABA and high salinity during germination. This study investigated the tolerance of the knockout ppr40-1 and knockdown ppr40-2 mutants to water deprivation. Our results show that these mutants display an enhanced tolerance to water deficit. The mutants had higher relative water content, reduced level of oxidative damage, and better photosynthetic parameters in water-limited conditions compared to wild-type plants. ppr40 mutants had considerable differences in metabolic profiles and expression of a number of stress-related genes, suggesting important metabolic reprogramming. Tolerance to water deficit was also manifested in higher survival rates and alleviated growth reduction when watering was suspended. Enhanced sensitivity to ABA and fast stomata closure was suggested to lead to improved capacity for water conservation in such environment. Overall, this study highlights the importance of mitochondrial functions and in particular PPR40 in plant responses to abiotic stress, particularly drought.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Mutação , Regulação da Expressão Gênica de Plantas , Secas , Plantas Geneticamente Modificadas/metabolismo
3.
Antioxidants (Basel) ; 12(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37627609

RESUMO

Polyamine (PA) catabolism mediated by amine oxidases is an important process involved in fine-tuning PA homeostasis and related mechanisms during salt stress. The significance of these amine oxidases in short-term responses to salt stress is, however, not well understood. In the present study, the effects of L-aminoguanidine (AG) on tomato roots treated with short-term salt stress induced by NaCl were studied. AG is usually used as a copper amine oxidase (CuAO or DAO) inhibitor. In our study, other alterations of PA catabolism, such as reduced polyamine oxidase (PAO), were also observed in AG-treated plants. Salt stress led to an increase in the reactive oxygen and nitrogen species in tomato root apices, evidenced by in situ fluorescent staining and an increase in free PA levels. Such alterations were alleviated by AG treatment, showing the possible antioxidant effect of AG in tomato roots exposed to salt stress. PA catabolic enzyme activities decreased, while the imbalance of hydrogen peroxide (H2O2), nitric oxide (NO), and hydrogen sulfide (H2S) concentrations displayed a dependence on stress intensity. These changes suggest that AG-mediated inhibition could dramatically rearrange PA catabolism and related reactive species backgrounds, especially the NO-related mechanisms. More studies are, however, needed to decipher the precise mode of action of AG in plants exposed to stress treatments.

4.
Front Plant Sci ; 14: 1221519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250442

RESUMO

Introduction: Zinc finger protein 3 (ZFP3) and closely related C2H2 zinc finger proteins have been identified as regulators of abscisic acid signals and photomorphogenic responses during germination. Whether ZFP3 and related ZFP factors regulate plant development is, however, not known. Results: ZFP3 overexpression reduced plant growth, limited cell expansion in leaves, and compromised root hair development. The T-DNA insertion zfp3 mutant and transgenic lines with silenced ZFP1, ZFP3, ZFP4, and ZFP7 genes were similar to wild-type plants or had only minor differences in plant growth and morphology, probably due to functional redundancy. RNAseq transcript profiling identified ZFP3-controlled gene sets, including targets of ABA signaling with reduced transcript abundance. The largest gene set that was downregulated by ZFP3 encoded regulatory and structural proteins in cell wall biogenesis, cell differentiation, and root hair formation. Chromatin immunoprecipitation confirmed ZFP3 binding to several target promoters. Discussion: Our results suggest that ZFP3 and related ZnF proteins can modulate cellular differentiation and plant vegetative development by regulating the expression of genes implicated in cell wall biogenesis.

5.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628560

RESUMO

Glutathione peroxidases (GPXs) are important antioxidant enzymes in animals. Plants contain GPX-like (GPXL) enzymes, which-in contrast to GPXs-contain cysteine in their active site instead of selenocysteine. Although several studies proved their importance in development and stress responses, their interaction with ethylene (ET) signalling is not known. Our aim was to investigate the involvement of AtGPXL5 in ET biosynthesis and/or signalling using Atgpxl5 mutant and AtGPXL5 cDNA-overexpressing (OX-AtGPXL5) lines. Four-day-old dark-grown Atgpxl5 seedlings had shorter hypocotyls and primary roots, while OX-AtGPXL5 seedlings exhibited a similar phenotype as wild type under normal conditions. Six-week-old OX-AtGPXL5 plants contained less H2O2 and malondialdehyde, but higher polyamine and similar ascorbate- and glutathione contents and redox potential (EGSH) than the Col-0. One-day treatment with the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) induced the activity of glutathione- and thioredoxin peroxidases and some other ROS-processing enzymes. In the Atgpxl5 mutants, the EGSH became more oxidised; parallelly, it produced more ethylene after the ACC treatment than other genotypes. Although the enhanced ET evolution measured in the Atgpxl5 mutant can be the result of the increased ROS level, the altered expression pattern of ET-related genes both in the Atgpxl5 and OX-AtGPXL5 plants suggests the interplay between AtGPXL5 and ethylene signalling.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Etilenos/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Plant Cell Environ ; 45(7): 1985-2003, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35486392

RESUMO

Adaptation of higher plants to extreme environmental conditions is under complex regulation. Several small peptides have recently been described to modulate responses to stress conditions. The Small Paraquat resistance protein (SPQ) of Lepidium crassifolium has previously been identified due to its capacity to confer paraquat resistance to overexpressing transgenic Arabidopsis plants. Here, we show that overexpression of the closely related Arabidopsis SPQ can also enhance resistance to paraquat, while the Arabidopsis spq1 mutant is slightly hypersensitive to this herbicide. Besides being implicated in paraquat response, overexpression of SPQs enhanced sensitivity to abscisic acid (ABA), and the knockout spq1 mutant was less sensitive to ABA. Both Lepidium- and Arabidopsis-derived SPQs could improve drought tolerance by reducing water loss, stabilizing photosynthetic electron transport and enhancing plant viability and survival in a water-limited environment. Enhanced drought tolerance of SPQ-overexpressing plants could be confirmed by characterizing various parameters of growth, morphology and photosynthesis using an automatic plant phenotyping platform with RGB and chlorophyll fluorescence imaging. Our results suggest that SPQs can be regulatory small proteins connecting ROS and ABA regulation and through that influence responses to certain stresses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lepidium , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Paraquat/metabolismo , Paraquat/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Água/metabolismo
7.
Trends Plant Sci ; 27(1): 39-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366236

RESUMO

Proline is a multifunctional amino acid that is accumulated in high concentrations in plants under various stress conditions. Proline accumulation is intimately connected to many cellular processes, such as osmotic pressure, energy status, nutrient availability, changes in redox balance, and defenses against pathogens. Proline biosynthesis and catabolism is linked to photosynthesis and mitochondrial respiration, respectively. Proline can function as a signal, modulating gene expression and certain metabolic processes. We review important findings on proline metabolism and function of the last decade, giving a more informative picture about the function of this unusual amino acid in maintaining cellular homeostasis, modulating plant development, and promoting stress acclimation.


Assuntos
Desenvolvimento Vegetal , Plantas , Pressão Osmótica , Fotossíntese , Plantas/metabolismo , Prolina/metabolismo
8.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205973

RESUMO

The Arabidopsis AtCRK5 protein kinase is involved in the establishment of the proper auxin gradient in many developmental processes. Among others, the Atcrk5-1 mutant was reported to exhibit a delayed gravitropic response via compromised PIN2-mediated auxin transport at the root tip. Here, we report that this phenotype correlates with lower superoxide anion (O2•-) and hydrogen peroxide (H2O2) levels but a higher nitric oxide (NO) content in the mutant root tips in comparison to the wild type (AtCol-0). The oxidative stress inducer paraquat (PQ) triggering formation of O2•- (and consequently, H2O2) was able to rescue the gravitropic response of Atcrk5-1 roots. The direct application of H2O2 had the same effect. Under gravistimulation, correct auxin distribution was restored (at least partially) by PQ or H2O2 treatment in the mutant root tips. In agreement, the redistribution of the PIN2 auxin efflux carrier was similar in the gravistimulated PQ-treated mutant and untreated wild type roots. It was also found that PQ-treatment decreased the endogenous NO level at the root tip to normal levels. Furthermore, the mutant phenotype could be reverted by direct manipulation of the endogenous NO level using an NO scavenger (cPTIO). The potential involvement of AtCRK5 protein kinase in the control of auxin-ROS-NO-PIN2-auxin regulatory loop is discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gravitação , Gravitropismo/genética , Peróxido de Hidrogênio/farmacologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Chemosphere ; 276: 130183, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088085

RESUMO

Microcystin-LR (MCY-LR) is a heptapeptide toxin produced mainly by freshwater cyanobacteria. It strongly inhibits protein phosphatases PP2A and PP1. Functioning of the PIN family of auxin efflux carriers is crucial for plant ontogenesis and their functions depend on their reversible phosphorylation. We aimed to reveal the adverse effects of MCY-LR on PIN and auxin distribution in Arabidopsis roots and its consequences for root development. Relatively short-term (24 h) MCY-LR treatments decreased the levels of PIN1, PIN2 and PIN7, but not of PIN3 in tips of primary roots. In contrast, levels of PIN1 and PIN2 increased in emergent lateral roots and their levels depended on the type of PIN in lateral root primordia. DR5:GFP reporter activity showed that the cyanotoxin-induced decrease of auxin levels/responses in tips of main roots in parallel to PIN levels. Those alterations did not affect gravitropic response of roots. However, MCY-LR complemented the altered gravitropic response of crk5-1 mutants, defective in a protein kinase with essential role in the correct membrane localization of PIN2. For MCY-LR treated Col-0 plants, the number of lateral root primordia but not of emergent laterals increased and lateral root primordia showed early development. In conclusion, inhibition of protein phosphatase activities changed PIN and auxin levels, thus altered root development. Previous data on aquatic plants naturally co-occurring with the cyanotoxin showed similar alterations of root development. Thus, our results on the model plant Arabidopsis give a mechanistic explanation of MCY-LR phytotoxicity in aquatic ecosystems.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Toxinas Bacterianas , Toxinas de Cianobactérias , Ecossistema , Ácidos Indolacéticos , Toxinas Marinhas , Microcistinas , Raízes de Plantas , Proteínas Serina-Treonina Quinases , Receptores de Superfície Celular
11.
J Exp Bot ; 72(5): 1558-1575, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33277993

RESUMO

Plants heat shock factors (HSFs) are encoded by large gene families with variable structure, expression, and function. HSFs are components of complex signaling systems that control responses not only to high temperatures but also to a number of abiotic stresses such as cold, drought, hypoxic conditions, soil salinity, toxic minerals, strong irradiation, and to pathogen threats. Here we provide an overview of the diverse world of plant HSFs through compilation and analysis of their functional versatility, diverse regulation, and interactions. Bioinformatic data on gene expression profiles of Arabidopsis HSF genes were re-analyzed to reveal their characteristic transcript patterns. While HSFs are regulated primarily at the transcript level, alternative splicing and post-translational modifications such as phosphorylation and sumoylation provides further variability. Plant HSFs are involved in an intricate web of protein-protein interactions which adds considerable complexity to their biological function. A list of such interactions was compiled from public databases and published data, and discussed to pinpoint their relevance in transcription control. Although most fundamental studies of plant HSFs have been conducted in the model plant, Arabidopsis, information on HSFs is accumulating in other plants such as tomato, rice, wheat, and sunflower. Understanding the function, interactions, and regulation of HSFs will facilitate the design of novel strategies to use engineered proteins to improve tolerance and adaptation of crops to adverse environmental conditions.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
12.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817249

RESUMO

The fine tuning of hormone (e.g., auxin and gibberellin) levels and hormone signaling is required for maintaining normal embryogenesis. Embryo polarity, for example, is ensured by the directional movement of auxin that is controlled by various types of auxin transporters. Here, we present pieces of evidence for the auxin-gibberellic acid (GA) hormonal crosstalk during embryo development and the regulatory role of the Arabidopsis thaliana Calcium-Dependent Protein Kinase-Related Kinase 5 (AtCRK5) in this regard. It is pointed out that the embryogenesis of the Atcrk5-1 mutant is delayed in comparison to the wild type. This delay is accompanied with a decrease in the levels of GA and auxin, as well as the abundance of the polar auxin transport (PAT) proteins PIN1, PIN4, and PIN7 in the mutant embryos. We have previously showed that AtCRK5 can regulate the PIN2 and PIN3 proteins either directly by phosphorylation or indirectly affecting the GA level during the root gravitropic and hypocotyl hook bending responses. In this manuscript, we provide evidence that the AtCRK5 protein kinase can in vitro phosphorylate the hydrophilic loops of additional PIN proteins that are important for embryogenesis. We propose that AtCRK5 can govern embryo development in Arabidopsis through the fine tuning of auxin-GA level and the accumulation of certain polar auxin transport proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Germinação , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica de Plantas , Giberelinas/análise , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
13.
Int J Mol Sci ; 20(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336871

RESUMO

Seedling establishment following germination requires the fine tuning of plant hormone levels including that of auxin. Directional movement of auxin has a central role in the associated processes, among others, in hypocotyl hook development. Regulated auxin transport is ensured by several transporters (PINs, AUX1, ABCB) and their tight cooperation. Here we describe the regulatory role of the Arabidopsis thaliana CRK5 protein kinase during hypocotyl hook formation/opening influencing auxin transport and the auxin-ethylene-GA hormonal crosstalk. It was found that the Atcrk5-1 mutant exhibits an impaired hypocotyl hook establishment phenotype resulting only in limited bending in the dark. The Atcrk5-1 mutant proved to be deficient in the maintenance of local auxin accumulation at the concave side of the hypocotyl hook as demonstrated by decreased fluorescence of the auxin sensor DR5::GFP. Abundance of the polar auxin transport (PAT) proteins PIN3, PIN7, and AUX1 were also decreased in the Atcrk5-1 hypocotyl hook. The AtCRK5 protein kinase was reported to regulate PIN2 protein activity by phosphorylation during the root gravitropic response. Here it is shown that AtCRK5 can also phosphorylate in vitro the hydrophilic loops of PIN3. We propose that AtCRK5 may regulate hypocotyl hook formation in Arabidopsis thaliana through the phosphorylation of polar auxin transport (PAT) proteins, the fine tuning of auxin transport, and consequently the coordination of auxin-ethylene-GA levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Hipocótilo/fisiologia , Morfogênese , Desenvolvimento Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/efeitos dos fármacos , Biomarcadores , Regulação da Expressão Gênica de Plantas , Genes Reporter , Germinação , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Fenótipo , Fosforilação , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Transdução de Sinais , Xantonas/farmacologia
14.
J Exp Bot ; 70(18): 4903-4918, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31086987

RESUMO

Heat shock factors regulate responses to high temperature, salinity, water deprivation, or heavy metals. Their function in combinations of stresses is, however, not known. Arabidopsis HEAT SHOCK FACTOR A4A (HSFA4A) was previously reported to regulate responses to salt and oxidative stresses. Here we show, that the HSFA4A gene is induced by salt, elevated temperature, and a combination of these conditions. Fast translocation of HSFA4A tagged with yellow fluorescent protein from cytosol to nuclei takes place in salt-treated cells. HSFA4A can be phosphorylated not only by mitogen-activated protein (MAP) kinases MPK3 and MPK6 but also by MPK4, and Ser309 is the dominant MAP kinase phosphorylation site. In vivo data suggest that HSFA4A can be the substrate of other kinases as well. Changing Ser309 to Asp or Ala alters intramolecular multimerization. Chromatin immunoprecipitation assays confirmed binding of HSFA4A to promoters of target genes encoding the small heat shock protein HSP17.6A and transcription factors WRKY30 and ZAT12. HSFA4A overexpression enhanced tolerance to individually and simultaneously applied heat and salt stresses through reduction of oxidative damage. Our results suggest that this heat shock factor is a component of a complex stress regulatory pathway, connecting upstream signals mediated by MAP kinases MPK3/6 and MPK4 with transcription regulation of a set of stress-induced target genes.


Assuntos
Arabidopsis/genética , Resposta ao Choque Térmico/genética , Estresse Salino/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Cloreto de Sódio/efeitos adversos , Fatores de Transcrição
15.
Front Plant Sci ; 10: 1584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921239

RESUMO

Plants have to adapt their metabolism to constantly changing environmental conditions, among which the availability of light and water is crucial in determining growth and development. Proline accumulation is one of the sensitive metabolic responses to extreme conditions; it is triggered by salinity or drought and is regulated by light. Here we show that red and blue but not far-red light is essential for salt-induced proline accumulation, upregulation of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) and downregulation of PROLINE DEHYDROGENASE 1 (PDH1) genes, which control proline biosynthetic and catabolic pathways, respectively. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the transcription factor ELONGATED HYPOCOTYL 5 (HY5) binds to G-box and C-box elements of P5CS1 and a C-box motif of PDH1. Salt-induced proline accumulation and P5CS1 expression were reduced in the hy5hyh double mutant, suggesting that HY5 promotes proline biosynthesis through connecting light and stress signals. Our results improve our understanding on interactions between stress and light signals, confirming HY5 as a key regulator in proline metabolism.

16.
Int J Mol Sci ; 19(5)2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693594

RESUMO

The Calcium-Dependent Protein Kinase (CDPK)-Related Kinase family (CRKs) consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT). However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein) expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Fotossíntese , Proteínas Quinases/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Luz Solar
17.
Plant Sci ; 270: 278-291, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29576081

RESUMO

The evolutionary conserved family of Selenoproteins performs redox-regulatory functions in bacteria, archaea and eukaryotes. Among them, members of the SELENOPROTEIN O (SELO) subfamily are located in mammalian and yeast mitochondria, but their functions are thus far enigmatic. Screening of T-DNA knockout mutants for resistance to the proline analogue thioproline (T4C), identified mutant alleles of the plant SELO homologue in Arabidopsis thaliana. Absence of SELO resulted in a stress-induced transcriptional activation instead of silencing of mitochondrial proline dehydrogenase, and also high elevation of Δ(1)-pyrroline-5-carboxylate dehydrogenase involved in degradation of proline, thereby alleviating T4C inhibition and lessening drought-induced proline accumulation. Unlike its animal homologues, SELO was localized to chloroplasts of plants ectopically expressing SELO-GFP. The protein was co-fractionated with thylakoid membrane complexes, and co-immunoprecipitated with FNR, PGRL1 and STN7, all involved in regulating PSI and downstream electron flow. The selo mutants displayed extended survival under dehydration, accompanied by longer photosynthetic activity, compared with wild-type plants. Enhanced expression of genes encoding ROS scavenging enzymes in the unstressed selo mutant correlated with higher oxidant scavenging capacity and reduced methyl viologen damage. The study elucidates SELO as a PSI-related component involved in regulating ROS levels and stress responses.


Assuntos
Arabidopsis/genética , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Secas , Sequestradores de Radicais Livres/metabolismo , Fotossíntese , Selenoproteínas/genética , Estresse Fisiológico
18.
Front Plant Sci ; 9: 219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520290

RESUMO

Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9) mutant. While the technology was developed with Arabidopsis plants, it is suitable to characterize plants of other species including crops, in a simple, affordable and fast way. PlantSize is publicly available (http://www.brc.hu/pub/psize/index.html).

19.
Plant Physiol ; 175(1): 555-567, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28765275

RESUMO

Pro accumulation in plants is a well-documented physiological response to osmotic stress caused by drought or salinity. In Arabidopsis (Arabidopsis thaliana), the stress and ABA-induced Δ1-PYRROLINE-5-CARBOXYLATE SYNTHETASE1 (P5CS1) gene was previously shown to control Pro biosynthesis in such adverse conditions. To identify regulatory factors that control the transcription of P5CS1, Y1H screens were performed with a genomic fragment of P5CS1, containing 1.2-kB promoter and 0.8-kb transcribed regions. The myeloblastosis (MYB)-type transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1) and PHR1-LIKE1 (PHL1) were identified to bind to P5CS1 regulatory sequences in the first intron, which carries a conserved PHR1-binding site (P1BS) motif. Binding of PHR1 and PHL1 factors to P1BS was confirmed by Y1H, electrophoretic mobility assay and chromatin immunoprecipitation. Phosphate starvation led to gradual increase in Pro content in wild-type Arabidopsis plants as well as transcriptional activation of P5CS1 and PRO DEHYDROGENASE2 genes. Induction of P5CS1 transcription and Pro accumulation during phosphate deficiency was considerably reduced by phr1 and phl1 mutations and was impaired in the ABA-deficient aba2-3 and ABA-insensitive abi4-1 mutants. Growth and viability of phr1phl1 double mutant was significantly reduced in phosphate-depleted medium, while growth was only marginally affected in the aba2-3 mutants, suggesting that ABA is implicated in growth retardation in such nutritional stress. Our results reveal a previously unknown link between Pro metabolism and phosphate nutrition and show that Pro biosynthesis is target of cross talk between ABA signaling and regulation of phosphate homeostasis through PHR1- and PHL1-mediated transcriptional activation of the P5CS1 gene.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glutamato-5-Semialdeído Desidrogenase/metabolismo , Complexos Multienzimáticos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Prolina/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação , Glutamato-5-Semialdeído Desidrogenase/genética , Complexos Multienzimáticos/genética , Mutação , Fosfatos/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Pirróis/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
20.
J Plant Physiol ; 201: 62-70, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27448721

RESUMO

Plants have divergent defense mechanisms against the harmful effects of heavy metals present in excess in soils and groundwaters. Poplars (Populus spp.) are widely cultivated because of their rapid growth and high biomass production, and members of the genus are increasingly used as experimental model organisms of trees and for phytoremediation purposes. Our aim was to investigate the copper and zinc stress responses of three outstanding biomass producer bred poplar lines to identify such transcripts of genes involved in the detoxification mechanisms, which can play an important role in the protection against heavy metals. Poplar cuttings were grown hydroponically and subjected to short-term (one week) mild and sublethal copper and zinc stresses. We evaluated the effects of the applied heavy metals and the responses of plants by detecting the changes of multiple physiological and biochemical parameters. The most severe cellular oxidative damage was caused by 30µM copper treatment, while zinc was less harmful. Analysis of stress-related transcripts revealed genotype-specific differences that are likely related to alterations in heavy metal tolerance. P. deltoides clones B-229 and PE 19/66 clones were clearly more effective at inducing the expression of various genes implicated in the detoxification process, such as the glutathione transferases, metallothioneins, ABC transporters, (namely PtGSTU51, PxMT1, PdABCC2,3), while the P. canadensis line M-1 accumulated more metal, resulting in greater cellular oxidative damage. Our results show that all three poplar clones are efficient in stress acclimatization, but with different molecular bases.


Assuntos
Metais Pesados/toxicidade , Populus/genética , Populus/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Análise de Variância , Biodegradação Ambiental/efeitos dos fármacos , Células Clonais , Cobre/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Inativação Metabólica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Populus/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Água/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...