Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virulence ; 12(1): 2902-2917, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34903146

RESUMO

Biofilm formation is a general strategy for bacterial pathogens to withstand host defense mechanisms. In this study, we found that serum proteases inhibit biofilm formation by Neisseria meningitidis, Neisseria gonorrhoeae, Haemophilus influenzae, and Bordetella pertussis. Confocal laser-scanning microscopy analysis revealed that these proteins reduce the biomass and alter the architecture of meningococcal biofilms. To understand the underlying mechanism, the serum was fractionated through size-exclusion chromatography and anion-exchange chromatography, and the composition of the fractions that retained anti-biofilm activity against N. meningitidis was analyzed by intensity-based absolute quantification mass spectrometry. Among the identified serum proteins, plasma kallikrein (PKLK), FXIIa, and plasmin were found to cleave neisserial heparin-binding antigen and the α-peptide of IgA protease on the meningococcal cell surface, resulting in the release of positively charged polypeptides implicated in biofilm formation by binding extracellular DNA. Further experiments also revealed that plasmin and PKLK inhibited biofilm formation of B. pertussis by cleaving filamentous hemagglutinin. We conclude that the proteolytic activity of serum proteases toward bacterial adhesins involved in biofilm formation could constitute a defense mechanism for the clearance of pathogens.


Assuntos
Fibrinolisina , Neisseria meningitidis , Adesinas Bacterianas/genética , Biofilmes , Fibrinolisina/metabolismo , Calicreínas/metabolismo , Neisseria meningitidis/genética
2.
Biotechnol Adv ; 36(8): 2077-2100, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266344

RESUMO

Novel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.


Assuntos
Proteínas de Bactérias , Hidrolases , Thermoanaerobacterium/enzimologia , DNA Arqueal/genética , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Metagenoma/genética , Metagenômica , Thermoanaerobacterium/genética
3.
Front Microbiol ; 7: 1779, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27899916

RESUMO

Lipolytic enzymes that retain high levels of catalytic activity when exposed to a variety of denaturing conditions are of high importance for a number of biotechnological applications. In this study, we aimed to identify new lipolytic enzymes, which are highly resistant to prolonged exposure to elevated temperatures. To achieve this, we searched for genes encoding for such proteins in the genomes of a microbial consortium residing in a hot spring located in China. After performing functional genomic screening on a bacterium of the genus Dictyoglomus, which was isolated from this hot spring following in situ enrichment, we identified a new esterolytic enzyme, termed EstDZ3. Detailed biochemical characterization of the recombinant enzyme, revealed that it constitutes a slightly alkalophilic and highly active esterase against esters of fatty acids with short to medium chain lengths. Importantly, EstDZ3 exhibits remarkable thermostability, as it retains high levels of catalytic activity after exposure to temperatures as high as 95°C for several hours. Furthermore, it exhibits very good stability against exposure to high concentrations of a variety of organic solvents. Interestingly, EstDZ3 was found to have very little similarity to previously characterized esterolytic enzymes. Computational modeling of the three-dimensional structure of this new enzyme predicted that it exhibits a typical α/ß hydrolase fold that seems to include a "subdomain insertion", which is similar to the one present in its closest homolog of known function and structure, the cinnamoyl esterase Lj0536 from Lactobacillus johnsonii. As it was found in the case of Lj0536, this structural feature is expected to be an important determinant of the catalytic properties of EstDZ3. The high levels of esterolytic activity of EstDZ3, combined with its remarkable thermostability and good stability against a range of organic solvents and other denaturing agents, render this new enzyme a candidate biocatalyst for high-temperature biotechnological applications.

4.
Front Microbiol ; 6: 1294, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635762

RESUMO

A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/ß-hydrolase family 3 as it lacks the majority of the 'cap' domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets.

5.
Am J Pathol ; 184(1): 159-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24479134

RESUMO

Because vascular or cardiac mineralization is inversely correlated with morbidity and long-term survival, we investigated the role of ABCC6 in the calcification response to cardiac injury in mice. By using two models of infarction, nonischemic cryoinjury and the pathologically relevant coronary artery ligation, we confirmed a large propensity to acute cardiac mineralization in Abcc6−/− mice. Furthermore, when the expression of ABCC6 was reduced to approximately 38% of wild-type levels in Abcc6+/− mice, no calcium deposits in injured cardiac tissue were observed. In addition, we used a gene therapy approach to deliver a functional human ABCC6 via hydrodynamic tail vein injection to approximately 13% of mouse hepatocytes, significantly reducing the calcification response to cardiac cryoinjury. We observed that the level and distribution of known regulators of mineralization, such as osteopontin and matrix Gla protein, but not osteocalcin, were concomitant to the level of hepatic expression of human and mouse ABCC6. We notably found that undercarboxylated matrix Gla protein precisely colocalized within areas of mineralization, whereas osteopontin was more diffusely distributed in the area of injury, suggesting a prominent association for matrix Gla protein and osteopontin in ABCC6-related dystrophic cardiac calcification. This study showed that the expression of ABCC6 in liver is an important determinant of calcification in cardiac tissues in response to injuries and is associated with changes in the expression patterns of regulators of mineralization.


Assuntos
Calcinose/metabolismo , Traumatismos Cardíacos/metabolismo , Fígado/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Traumatismos Cardíacos/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Osteopontina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteína de Matriz Gla
6.
Front Microbiol ; 3: 207, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22783239

RESUMO

Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis, and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat) pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as phyla-specific pathways among the archaea. A more comprehensive understanding of the transport pathways used and post-translational modifications of secreted archaeal proteins will also facilitate the identification and heterologous expression of commercially valuable archaeal enzymes.

7.
PLoS One ; 6(9): e24738, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935449

RESUMO

Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application.


Assuntos
Fígado/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Humanos , Fígado/patologia , Camundongos , Camundongos Transgênicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
9.
Curr Drug Targets ; 12(5): 671-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21039331

RESUMO

The ABCC6 gene encodes an organic anion transporter protein, ABCC6/MRP6. Mutations in the gene cause a rare, recessive genetic disease, pseudoxanthoma elasticum, while the loss of one ABCC6 allele is a genetic risk factor in coronary artery disease. We review here the information available on gene structure, evolution as well as the present knowledge on its transcriptional regulation. We give a detailed description of the characteristics of the protein, and analyze the relationship between the distributions of missense disease-causing mutations in the predicted three-dimensional structure of the transporter, which suggests functional importance of the domain-domain interactions. Though neither the physiological function of the protein nor its role in the pathobiology of the diseases are known, a current hypothesis that ABCC6 may be involved in the efflux of one form of Vitamin K from the liver is discussed. Finally, we analyze potential strategies how the gene can be targeted on the transcriptional level to increase protein expression in order to compensate for reduced activity. In addition, pharmacologic correction of trafficking-defect mutants or suppression of stop codon mutations as potential future therapeutic interventions are also reviewed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/terapia , Vitamina K/metabolismo , Alelos , Animais , Modelos Animais de Doenças , Terapia Genética , Humanos , Camundongos , Terapia de Alvo Molecular , Mutação , Pseudoxantoma Elástico/metabolismo , Vitamina K/química , Vitamina K/genética
10.
Mol Microbiol ; 64(3): 795-806, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17462024

RESUMO

The hyperthermophilic archaeon Sulfolobus solfataricus contains an unusual large number of sugar binding proteins that are synthesized as precursors with a class III signal peptide. Such signal peptides are commonly used to direct archaeal flagellin subunits or bacterial (pseudo)pilins into extracellular macromolecular surface appendages. Likewise, S. solfataricus binding proteins have been suggested to assemble in higher ordered surface structures as well, tentatively termed the bindosome. Here we show that S. solfataricus contains a specific system that is needed for the functional surface localization of sugar binding proteins. This system, encoded by the bas (bindosome assembly system) operon, is composed of five proteins: basABC, three homologues of so-called bacterial (pseudo)pilins; BasE, a cytoplasmic ATPase; and BasF, an integral membrane protein. Deletion of either the three (pseudo)pilin genes or the basEF genes resulted in a severe defect of the cells to grow on substrates which are transported by sugar binding proteins containing class III signal peptides, while growth on glucose and maltose was restored when the corresponding genes were reintroduced in these cells. Concomitantly, DeltabasABC and DeltabasEF cells were severely impaired in glucose uptake even though the sugar binding proteins were normally secreted across the cytoplasmic membrane. These data underline the hypothesis that the bas operon is involved in the functional localization of sugar binding proteins at the cell surface of S. solfataricus. In contrast to surface structure assembly systems of Gram-negative bacteria, the bas operon seems to resemble an ancestral simplified form of these machineries.


Assuntos
Proteínas de Transporte/metabolismo , Sinais Direcionadores de Proteínas , Sulfolobus solfataricus/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Arabinose/metabolismo , Arabinose/farmacocinética , Southern Blotting , Western Blotting , Carboidratos/farmacocinética , Radioisótopos de Carbono , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Eletroforese em Gel de Poliacrilamida , Deleção de Genes , Teste de Complementação Genética , Glucose/metabolismo , Glucose/farmacocinética , Maltose/metabolismo , Maltose/farmacocinética , Modelos Biológicos , Mutação , Óperon/genética , Ligação Proteica , Sulfolobus solfataricus/genética
11.
J Bacteriol ; 189(11): 4305-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17416662

RESUMO

Flagellation in archaea is widespread and is involved in swimming motility. Here, we demonstrate that the structural flagellin gene from the crenarchaeaon Sulfolobus solfataricus is highly expressed in stationary-phase-grown cells and under unfavorable nutritional conditions. A mutant in a flagellar auxiliary gene, flaJ, was found to be nonmotile. Electron microscopic imaging of the flagellum indicates that the filaments are composed of right-handed helices.


Assuntos
Proteínas Arqueais/genética , Flagelos/fisiologia , Flagelina/genética , Sulfolobus solfataricus/genética , Northern Blotting , Flagelos/genética , Flagelos/ultraestrutura , Regulação da Expressão Gênica em Archaea , Ordem dos Genes , Microscopia Eletrônica de Transmissão , Mutação , Óperon , Sulfolobus solfataricus/fisiologia , Sulfolobus solfataricus/ultraestrutura
12.
J Bacteriol ; 189(3): 772-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17114255

RESUMO

Most secreted archaeal proteins are targeted to the membrane via a tripartite signal composed of a charged N terminus and a hydrophobic domain, followed by a signal peptidase-processing site. Signal peptides of archaeal flagellins, similar to class III signal peptides of bacterial type IV pilins, are distinct in that their processing sites precede the hydrophobic domain, which is crucial for assembly of these extracytoplasmic structures. To identify the complement of archaeal proteins with class III signal sequences, a PERL program (FlaFind) was written. A diverse set of proteins was identified, and many of these FlaFind positives were encoded by genes that were cotranscribed with homologs of pilus assembly genes. Moreover, structural conservation of primary sequences between many FlaFind positives and subunits of bacterial pilus-like structures, which have been shown to be critical for pilin assembly, have been observed. A subset of pilin-like FlaFind positives contained a conserved domain of unknown function (DUF361) within the signal peptide. Many of the genes encoding these proteins were in operons that contained a gene encoding a novel euryarchaeal prepilin-peptidase, EppA, homolog. Heterologous analysis revealed that Methanococcus maripaludis DUF361-containing proteins were specifically processed by the EppA homolog of this archaeon. Conversely, M. maripaludis preflagellins were cleaved only by the archaeal preflagellin peptidase FlaK. Together, the results reveal a diverse set of archaeal proteins with class III signal peptides that might be subunits of as-yet-undescribed cell surface structures, such as archaeal pili.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Proteínas de Fímbrias/metabolismo , Peptídeo Hidrolases/metabolismo , Sinais Direcionadores de Proteínas/genética , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Fímbrias Bacterianas/metabolismo , Modelos Biológicos , Peptídeo Hidrolases/genética , Estrutura Secundária de Proteína
13.
Nat Rev Microbiol ; 4(7): 537-47, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16755286

RESUMO

Archaea are similar to other prokaryotes in most aspects of cell structure but are unique with respect to the lipid composition of the cytoplasmic membrane and the structure of the cell surface. Membranes of archaea are composed of glycerol-ether lipids instead of glycerol-ester lipids and are based on isoprenoid side chains, whereas the cell walls are formed by surface-layer proteins. The unique cell surface of archaea requires distinct solutions to the problem of how proteins cross this barrier to be either secreted into the medium or assembled as appendages at the cell surface.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Membrana Celular/metabolismo , Transporte Proteico , Archaea/química , Membrana Celular/química , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/química , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Modelos Biológicos
14.
J Bacteriol ; 188(4): 1437-43, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16452426

RESUMO

Archaeal preflagellin peptidases and bacterial type IV prepilin peptidases belong to a family of aspartic acid proteases that cleave the leader peptides of precursor proteins with type IV prepilin signal sequences. The substrate repertoire of PibD from the crenarchaeon Sulfolobus solfataricus is unusually diverse. In addition to flagellin, PibD cleaves three sugar-binding proteins unique to this species and a number of proteins with unknown function. Here we demonstrate that PibD contains two aspartic acid residues that are essential for cleavage activity. An additional pair of aspartic acids in a large cytoplasmic loop is also important for function and is possibly involved in leader peptide recognition. Combining the results of transmembrane segment predictions and cysteine-labeling experiments, we suggest a membrane topology model for PibD with the active-site aspartic acid residues exposed to the cytosol.


Assuntos
Proteínas Arqueais/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Sulfolobus solfataricus/enzimologia , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sítios de Ligação , Citosol/metabolismo , Precursores de Proteínas/metabolismo , Especificidade por Substrato
15.
J Bacteriol ; 185(13): 3918-25, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12813086

RESUMO

A large number of secretory proteins in the thermoacidophile Sulfolobus solfataricus are synthesized as a precursor with an unusual leader peptide that resembles bacterial type IV prepilin signal sequences. This set of proteins includes the flagellin subunit but also various solute binding proteins. Here we describe the identification of the S. solfataricus homolog of bacterial type IV prepilin peptidases, termed PibD. PibD is an integral membrane protein that is phylogenetically related to the bacterial enzymes. When heterologously expressed in Escherichia coli, PibD is capable of processing both the flagellin and glucose-binding protein (GlcS) precursors. Site-directed mutagenesis of the GlcS signal peptide shows that the substrate specificity of PibD is consistent with the variations found in proteins with type IV prepilin-like signal sequences of S. solfataricus. We conclude that PibD is responsible for the processing of these secretory proteins in S. solfataricus.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Endopeptidases/metabolismo , Homologia de Sequência de Aminoácidos , Sulfolobus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endopeptidases/química , Endopeptidases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/genética , Alinhamento de Sequência , Especificidade por Substrato , Sulfolobus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...