Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(6): e1011959, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900780

RESUMO

Unlike proteins, RNAs deposited in the Protein Data Bank do not contain topological knots. Recently, admittedly, the first trefoil knot and some lasso-type conformations have been found in experimental RNA structures, but these are still exceptional cases. Meanwhile, algorithms predicting 3D RNA models have happened to form knotted structures not so rarely. Interestingly, machine learning-based predictors seem to be more prone to generate knotted RNA folds than traditional methods. A similar situation is observed for the entanglements of structural elements. In this paper, we analyze all models submitted to the CASP15 competition in the 3D RNA structure prediction category. We show what types of topological knots and structure element entanglements appear in the submitted models and highlight what methods are behind the generation of such conformations. We also study the structural aspect of susceptibility to entanglement. We suggest that predictors take care of an evaluation of RNA models to avoid publishing structures with artifacts, such as unusual entanglements, that result from hallucinations of predictive algorithms.

2.
Nucleic Acids Res ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587206

RESUMO

Alignment of 3D molecular structures involves overlaying their sets of atoms in space in such a way as to minimize the distance between the corresponding atoms. The purpose of this procedure is usually to analyze and assess structural similarity on a global (e.g. evaluating predicted 3D models and clustering structures) or a local level (e.g. searching for common substructures). Although the idea of alignment is simple, combinatorial algorithms that implement it require considerable computational resources, even when processing relatively small structures. In this paper, we introduce RNAhugs, a web server for custom and flexible alignment of 3D RNA structures. Using two efficient heuristics, GEOS and GENS, it finds the longest corresponding fragments within 3D structures that may differ in sizes-given in the PDB or PDBx/mmCIF formats-that manage to align with user-specified accuracy (i.e. with an RMSD not exceeding a cutoff value given as an input parameter). A distinctive advantage of the system lies in its ability to process multi-model files and compare the results of 1-25 alignments in a single task. RNAhugs has an intuitive interface and is publicly available at https://rnahugs.cs.put.poznan.pl/.

3.
Nucleic Acids Res ; 51(18): 9522-9532, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702120

RESUMO

The protein structure prediction problem has been solved for many types of proteins by AlphaFold. Recently, there has been considerable excitement to build off the success of AlphaFold and predict the 3D structures of RNAs. RNA prediction methods use a variety of techniques, from physics-based to machine learning approaches. We believe that there are challenges preventing the successful development of deep learning-based methods like AlphaFold for RNA in the short term. Broadly speaking, the challenges are the limited number of structures and alignments making data-hungry deep learning methods unlikely to succeed. Additionally, there are several issues with the existing structure and sequence data, as they are often of insufficient quality, highly biased and missing key information. Here, we discuss these challenges in detail and suggest some steps to remedy the situation. We believe that it is possible to create an accurate RNA structure prediction method, but it will require solving several data quality and volume issues, usage of data beyond simple sequence alignments, or the development of new less data-hungry machine learning methods.

4.
Proteins ; 91(12): 1790-1799, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615316

RESUMO

As CASP15 participants, in the new category of 3D RNA structure prediction, we applied expert modeling with the support of our proprietary system RNAComposer. Although RNAComposer is primarily known as an automated web server, its features allow it to be used interactively, for example, for homology-based modeling or assembling models from user-provided structural elements. In the paper, we present various scenarios of applying the system to predict the 3D RNA structures that we employed. Their combination with expert input, comparative analysis of models, and routines to select representative resultant structures form a ready-for-reuse workflow. With selected examples, we demonstrate its application for the in silico modeling of natural and synthetic RNA molecules targeted in CASP15.


Assuntos
RNA , Software , Humanos , RNA/química , Conformação de Ácido Nucleico , Modelos Moleculares , Simulação por Computador
5.
Proteins ; 91(12): 1550-1557, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37306011

RESUMO

Prediction categories in the Critical Assessment of Structure Prediction (CASP) experiments change with the need to address specific problems in structure modeling. In CASP15, four new prediction categories were introduced: RNA structure, ligand-protein complexes, accuracy of oligomeric structures and their interfaces, and ensembles of alternative conformations. This paper lists technical specifications for these categories and describes their integration in the CASP data management system.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Proteínas/química , Modelos Moleculares , Ligantes
6.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37166444

RESUMO

MOTIVATION: Tertiary structure alignment is one of the main challenges in the computer-aided comparative study of molecular structures. Its aim is to optimally overlay the 3D shapes of two or more molecules in space to find the correspondence between their nucleotides. Alignment is the starting point for most algorithms that assess structural similarity or find common substructures. Thus, it has applications in solving a variety of bioinformatics problems, e.g. in the search for structural patterns, structure clustering, identifying structural redundancy, and evaluating the prediction accuracy of 3D models. To date, several tools have been developed to align 3D structures of RNA. However, most of them are not applicable to arbitrarily large structures and do not allow users to parameterize the optimization algorithm. RESULTS: We present two customizable heuristics for flexible alignment of 3D RNA structures, geometric search (GEOS), and genetic algorithm (GENS). They work in sequence-dependent/independent mode and find the suboptimal alignment of expected quality (below a predefined RMSD threshold). We compare their performance with those of state-of-the-art methods for aligning RNA structures. We show the results of quantitative and qualitative tests run for all of these algorithms on benchmark sets of RNA structures. AVAILABILITY AND IMPLEMENTATION: Source codes for both heuristics are hosted at https://github.com/RNApolis/rnahugs.


Assuntos
RNA , Software , RNA/química , Heurística , Algoritmos , Conformação de Ácido Nucleico
7.
Nucleic Acids Res ; 51(W1): W607-W612, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37158242

RESUMO

Quadruplexes are four-stranded DNA/RNA motifs of high functional significance that fold into complex shapes. They are widely recognized as important regulators of genomic processes and are among the most frequently investigated potential drug targets. Despite interest in quadruplexes, few studies focus on automatic tools that help to understand the many unique features of their 3D folds. In this paper, we introduce WebTetrado, a web server for analyzing 3D structures of quadruplex structures. It has a user-friendly interface and offers many advanced features, including automatic identification, annotation, classification, and visualization of the motif. The program applies to the experimental or in silico generated 3D models provided in the PDB and PDBx/mmCIF files. It supports canonical G-quadruplexes as well as non-G-based quartets. It can process unimolecular, bimolecular, and tetramolecular quadruplexes. WebTetrado is implemented as a publicly available web server with an intuitive interface and can be freely accessed at https://webtetrado.cs.put.poznan.pl/.


Assuntos
Biologia Computacional , Simulação por Computador , Visualização de Dados , Quadruplex G , Software , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Internet , Biologia Computacional/instrumentação , Biologia Computacional/métodos
8.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096592

RESUMO

Since the 1980s, dozens of computational methods have addressed the problem of predicting RNA secondary structure. Among them are those that follow standard optimization approaches and, more recently, machine learning (ML) algorithms. The former were repeatedly benchmarked on various datasets. The latter, on the other hand, have not yet undergone extensive analysis that could suggest to the user which algorithm best fits the problem to be solved. In this review, we compare 15 methods that predict the secondary structure of RNA, of which 6 are based on deep learning (DL), 3 on shallow learning (SL) and 6 control methods on non-ML approaches. We discuss the ML strategies implemented and perform three experiments in which we evaluate the prediction of (I) representatives of the RNA equivalence classes, (II) selected Rfam sequences and (III) RNAs from new Rfam families. We show that DL-based algorithms (such as SPOT-RNA and UFold) can outperform SL and traditional methods if the data distribution is similar in the training and testing set. However, when predicting 2D structures for new RNA families, the advantage of DL is no longer clear, and its performance is inferior or equal to that of SL and non-ML methods.


Assuntos
Aprendizado de Máquina , RNA , Humanos , RNA/genética , RNA/química , Algoritmos , Benchmarking
9.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077037

RESUMO

RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5'- and 3'-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use.


Assuntos
COVID-19 , RNA , Regiões 3' não Traduzidas , Humanos , Conformação de Ácido Nucleico , RNA/química , SARS-CoV-2
10.
Bioinformatics ; 38(17): 4200-4205, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809063

RESUMO

MOTIVATION: Knowledge of the 3D structure of RNA supports discovering its functions and is crucial for designing drugs and modern therapeutic solutions. Thus, much attention is devoted to experimental determination and computational prediction targeting the global fold of RNA and its local substructures. The latter include multi-branched loops-functionally significant elements that highly affect the spatial shape of the entire molecule. Unfortunately, their computational modeling constitutes a weak point of structural bioinformatics. A remedy for this is in collecting these motifs and analyzing their features. RESULTS: RNAloops is a self-updating database that stores multi-branched loops identified in the PDB-deposited RNA structures. A description of each loop includes angular data-planar and Euler angles computed between pairs of adjacent helices to allow studying their mutual arrangement in space. The system enables search and analysis of multiloops, presents their structure details numerically and visually, and computes data statistics. AVAILABILITY AND IMPLEMENTATION: RNAloops is freely accessible at https://rnaloops.cs.put.poznan.pl. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , RNA/química , Conformação de Ácido Nucleico , Análise de Sequência de RNA , Bases de Dados Factuais
11.
Bioinformatics ; 38(14): 3668-3670, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35674373

RESUMO

MOTIVATION: The development of algorithms dedicated to RNA three-dimensional (3D) structures contributes to the demand for training, testing and benchmarking data. A reliable source of such data derived from computational prediction is the RNA-Puzzles repository. In contrast, the largest resource with experimentally determined structures is the Protein Data Bank. However, files in this archive often contain other molecular data in addition to the RNA structure itself, which-to be used by RNA processing algorithms-should be removed. RESULTS: RNAsolo is a self-updating database dedicated to RNA bioinformatics. It systematically collects experimentally determined RNA 3D structures stored in the PDB, cleans them from non-RNA chains, and groups them into equivalence classes. It allows users to download various subsets of data-clustered by resolution, source, data format, etc.-for further processing and analysis with a single click. AVAILABILITY AND IMPLEMENTATION: The repository is publicly available at https://rnasolo.cs.put.poznan.pl.


Assuntos
RNA , Software , RNA/química , Conformação de Ácido Nucleico , Biologia Computacional , Bases de Dados de Proteínas
12.
Bioinformatics ; 38(15): 3835-3836, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35703937

RESUMO

MOTIVATION: Quadruplexes are specific 3D structures found in nucleic acids. Due to the exceptional properties of these motifs, their exploration with the general-purpose bioinformatics methods can be problematic or insufficient. The same applies to visualizing their structure. A hand-drawn layer diagram is the most common way to represent the quadruplex anatomy. No molecular visualization software generates such a structural model based on atomic coordinates. RESULTS: DrawTetrado is an open-source Python program for automated visualization targeting the structures of quadruplexes and G4-helices. It generates static layer diagrams that represent structural data in a pseudo-3D perspective. The possibility to set color schemes, nucleotide labels, inter-element distances or angle of view allows for easy customization of the output drawing. AVAILABILITY AND IMPLEMENTATION: The program is available under the MIT license at https://github.com/RNApolis/drawtetrado.


Assuntos
Ácidos Nucleicos , Software , Biologia Computacional , Estrutura Secundária de Proteína , Nucleotídeos
13.
Nucleic Acids Res ; 50(W1): W663-W669, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349710

RESUMO

Advances in experimental and computational techniques enable the exploration of large and complex RNA 3D structures. These, in turn, reveal previously unstudied properties and motifs not characteristic for small molecules with simple architectures. Examples include entanglements of structural elements in RNA molecules and knot-like folds discovered, among others, in the genomes of RNA viruses. Recently, we presented the first classification of entanglements, determined by their topology and the type of entangled structural elements. Here, we introduce RNAspider - a web server to automatically identify, classify, and visualize primary and higher-order entanglements in RNA tertiary structures. The program applies to evaluate RNA 3D models obtained experimentally or by computational prediction. It supports the analysis of uncommon topologies in the pseudoknotted RNA structures. RNAspider is implemented as a publicly available tool with a user-friendly interface and can be freely accessed at https://rnaspider.cs.put.poznan.pl/.


Assuntos
RNA , Software , RNA/química , Conformação de Ácido Nucleico , Análise de Sequência de RNA
14.
Nucleic Acids Res ; 50(D1): D253-D258, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986600

RESUMO

ONQUADRO is an advanced database system that supports the study of the structures of canonical and non-canonical quadruplexes. It combines a relational database that collects comprehensive information on tetrads, quadruplexes, and G4-helices; programs to compute structure parameters and visualise the data; scripts for statistical analysis; automatic updates and newsletter modules; and a web application that provides a user interface. The database is a self-updating resource, with new information arriving once a week. The preliminary data are downloaded from the Protein Data Bank, processed, annotated, and completed. As of August 2021, ONQUADRO contains 1,661 tetrads, 518 quadruplexes, and 30 G4-helices found in 467 experimentally determined 3D structures of nucleic acids. Users can view and download their description: sequence, secondary structure (dot-bracket, classical diagram, arc diagram), tertiary structure (ball-and-stick, surface or vdw-ball model, layer diagram), planarity, twist, rise, chi angle (value and type), loop characteristics, strand directionality, metal ions, ONZ, and Webba da Silva classification (the latter by loop topology and tetrad combination), origin structure ID, assembly ID, experimental method, and molecule type. The database is freely available at https://onquadro.cs.put.poznan.pl/. It can be used on both desktop computers and mobile devices.


Assuntos
DNA/química , Bases de Dados de Ácidos Nucleicos , Quadruplex G , Conformação de Ácido Nucleico , RNA/química , Interface Usuário-Computador , Animais , Sequência de Bases , Gráficos por Computador , DNA/genética , DNA/metabolismo , Humanos , Internet , RNA/genética , RNA/metabolismo
15.
J Biomol Struct Dyn ; 40(7): 3038-3045, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33200684

RESUMO

A new mechanism of RNA circularization driven by specific binding of miRNAs is described. We identified the 71 CUUCC pentanucleotide motifs distributed regularly throughout the entire molecule of CDR1as RNA that bind to 71 miRNAs through their seed sequence GGAAG. The sequential binding of miR-7 RNAs (71 molecules) brings both ends of CDR1as RNA (1 molecule) together and stimulate phosphodiester bond formation between nucleotides C1 and A1299 at the 5' and 3' end, respectively. The binding of miRNAs to CDR1as RNA results in the unique complex formation, which shows three specific structural domains: (i) two short helixes with an internal loop, (ii) the hinge, and (iii) the triple-helix. The proposed mechanism explains specific RNA circularization and its function as a miRNAs sponge. Furthermore, the existing wet experimental data on the interaction of CDR1as RNA with miR-7 fully supports our observation. Although miR-671 shows the same seed sequence as miR-7, it forms an almost perfect double helix with CDR1as RNA and induces the cleavage of CDR1as, but does not stimulate circularization. To check how common is the proposed mechanism among circular RNAs, we analyzed the most recent circAtlas database counting almost 1.1 million sequences. It turned out that there are a huge number of circRNAs, which showed miRNAs seed binding sequences distributed through the whole circRNA sequences and prove that circularization of linear transcript is miRNA dependent.Communicated by Ramaswamy H. Sarma.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/genética , RNA/metabolismo , RNA Circular/genética
16.
RNA ; 28(2): 250-262, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34819324

RESUMO

In silico prediction is a well-established approach to derive a general shape of an RNA molecule based on its sequence or secondary structure. This paper reports an analysis of the stereochemical quality of the RNA three-dimensional models predicted using dedicated computer programs. The stereochemistry of 1052 RNA 3D structures, including 1030 models predicted by fully automated and human-guided approaches within 22 RNA-Puzzles challenges and reference structures, is analyzed. The evaluation is based on standards of RNA stereochemistry that the Protein Data Bank requires from deposited experimental structures. Deviations from standard bond lengths and angles, planarity, or chirality are quantified. A reduction in the number of such deviations should help in the improvement of RNA 3D structure modeling approaches.


Assuntos
Simulação de Dinâmica Molecular/normas , RNA/química , Animais , Humanos , Conformação de Ácido Nucleico
17.
Nucleic Acids Res ; 49(17): 9625-9632, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34432024

RESUMO

Computational methods to predict RNA 3D structure have more and more practical applications in molecular biology and medicine. Therefore, it is crucial to intensify efforts to improve the accuracy and quality of predicted three-dimensional structures. A significant role in this is played by the RNA-Puzzles initiative that collects, evaluates, and shares RNAs built computationally within currently nearly 30 challenges. RNA-Puzzles datasets, subjected to multi-criteria analysis, allow revealing the strengths and weaknesses of computer prediction methods. Here, we study the issue of entangled RNA fragments in the predicted RNA 3D structure models. By entanglement, we mean an arrangement of two structural elements such that one of them passes through the other. We propose the classification of entanglements driven by their topology and components. It distinguishes two general classes, interlaces and lassos, and subclasses characterized by element types-loops, dinucleotide steps, open single-stranded fragments-and puncture multiplicity. Our computational pipeline for entanglement detection, applied for 1,017 non-redundant models from RNA-Puzzles, has shown the frequency of different entanglements and allowed identifying 138 structures with intersected assemblies.


Assuntos
Modelos Moleculares , RNA/química , Biologia Computacional , Conformação de Ácido Nucleico
18.
Bioinformatics ; 36(22-23): 5507-5513, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367605

RESUMO

MOTIVATION: Viruses are the most abundant biological entities and constitute a large reservoir of genetic diversity. In recent years, knowledge about them has increased significantly as a result of dynamic development in life sciences and rapid technological progress. This knowledge is scattered across various data repositories, making a comprehensive analysis of viral data difficult. RESULTS: In response to the need for gathering a comprehensive knowledge of viruses and viral sequences, we developed Virxicon, a lexicon of all experimentally acquired sequences for RNA and DNA viruses. The ability to quickly obtain data for entire viral groups, searching sequences by levels of taxonomic hierarchy-according to the Baltimore classification and ICTV taxonomy-and tracking the distribution of viral data and its growth over time are unique features of our database compared to the other tools. AVAILABILITYAND IMPLEMENTATION: Virxicon is a publicly available resource, updated weekly. It has an intuitive web interface and can be freely accessed at http://virxicon.cs.put.poznan.pl/.

19.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32898859

RESUMO

Quadruplexes (G4s) are of interest, which increases with the number of identified G4 structures and knowledge about their biomedical potential. These unique motifs form in many organisms, including humans, where their appearance correlates with various diseases. Scientists store and analyze quadruplexes using recently developed bioinformatic tools-many of them focused on DNA structures. With an expanding collection of G4 RNAs, we check how existing tools deal with them. We review all available bioinformatics resources dedicated to quadruplexes and examine their usefulness in G4 RNA analysis. We distinguish the following subsets of resources: databases, tools to predict putative quadruplex sequences, tools to predict secondary structure with quadruplexes and tools to analyze and visualize quadruplex structures. We share the results obtained from processing specially created RNA datasets with these tools. Contact: mszachniuk@cs.put.poznan.pl Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Quadruplex G , RNA/química , Algoritmos , Sequência de Bases , Simulação por Computador , DNA/química , DNA/genética , Humanos , Modelos Moleculares , RNA/genética , Reprodutibilidade dos Testes
20.
PLoS One ; 15(10): e0239287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002005

RESUMO

RNAs adopt specific structures to perform their functions, which are critical to fundamental cellular processes. For decades, these structures have been determined and modeled with strong support from computational methods. Still, the accuracy of the latter ones depends on the availability of experimental data, for example, chemical probing information that can define pseudo-energy constraints for RNA folding algorithms. At the same time, diverse computational tools have been developed to facilitate analysis and visualization of data from RNA structure probing experiments followed by capillary electrophoresis or next-generation sequencing. RNAthor, a new software tool for the fully automated normalization of SHAPE and DMS probing data resolved by capillary electrophoresis, has recently joined this collection. RNAthor automatically identifies unreliable probing data. It normalizes the reactivity information to a uniform scale and uses it in the RNA secondary structure prediction. Our web server also provides tools for fast and easy RNA probing data visualization and statistical analysis that facilitates the comparison of multiple data sets. RNAthor is freely available at http://rnathor.cs.put.poznan.pl/.


Assuntos
Biologia Computacional/métodos , Eletroforese Capilar , Dobramento de RNA , RNA/química , Estatística como Assunto/métodos , Internet , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...