Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38252567

RESUMO

The increasing ubiquity of data in everyday life has elevated the importance of data literacy and accessible data representations, particularly for individuals with disabilities. While prior research predominantly focuses on the needs of the visually impaired, our survey aims to broaden this scope by investigating accessible data representations across a more inclusive spectrum of disabilities. After conducting a systematic review of 152 accessible data representation papers from ACM and IEEE databases, we found that roughly 78% of existing articles center on vision impairments. In this paper, we conduct a comprehensive review of the remaining 22% of papers focused on underrepresented disability communities. We developed categorical dimensions based on accessibility, visualization, and human-computer interaction to classify the papers. These dimensions include the community of focus, issues addressed, contribution type, study methods, participants, data type, visualization type, and data domain. Our work redefines accessible data representations by illustrating their application for disabilities beyond those related to vision. Building on our literature review, we identify and discuss opportunities for future research in accessible data representations. All supplemental materials are available at https://osf.io/ yv4xm/?view_only=b36a3fbf7a14b3888029966faa3def9.

2.
IEEE Trans Vis Comput Graph ; 30(1): 913-923, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906495

RESUMO

Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection-the most critical atomic operation for interaction-by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37922174

RESUMO

Visual clustering is a common perceptual task in scatterplots that supports diverse analytics tasks (e.g., cluster identification). However, even with the same scatterplot, the ways of perceiving clusters (i.e., conducting visual clustering) can differ due to the differences among individuals and ambiguous cluster boundaries. Although such perceptual variability casts doubt on the reliability of data analysis based on visual clustering, we lack a systematic way to efficiently assess this variability. In this research, we study perceptual variability in conducting visual clustering, which we call Cluster Ambiguity. To this end, we introduce CLAMS, a data-driven visual quality measure for automatically predicting cluster ambiguity in monochrome scatterplots. We first conduct a qualitative study to identify key factors that affect the visual separation of clusters (e.g., proximity or size difference between clusters). Based on study findings, we deploy a regression module that estimates the human-judged separability of two clusters. Then, CLAMS predicts cluster ambiguity by analyzing the aggregated results of all pairwise separability between clusters that are generated by the module. CLAMS outperforms widely-used clustering techniques in predicting ground truth cluster ambiguity. Meanwhile, CLAMS exhibits performance on par with human annotators. We conclude our work by presenting two applications for optimizing and benchmarking data mining techniques using CLAMS. The interactive demo of CLAMS is available at clusterambiguity.dev.

4.
IEEE Comput Graph Appl ; 43(3): 88-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195830

RESUMO

Some 15 years ago, Visualization Viewpoints published an influential article titled Rainbow Color Map (Still) Considered Harmful (Borland and Taylor, 2007). The paper argued that the "rainbow colormap's characteristics of confusing the viewer, obscuring the data and actively misleading interpretation make it a poor choice for visualization." Subsequent articles often repeat and extend these arguments, so much so that avoiding rainbow colormaps, along with their derivatives, has become dogma in the visualization community. Despite this loud and persistent recommendation, scientists continue to use rainbow colormaps. Have we failed to communicate our message, or do rainbow colormaps offer advantages that have not been fully appreciated? We argue that rainbow colormaps have properties that are underappreciated by existing design conventions. We explore key critiques of the rainbow in the context of recent research to understand where and how rainbows might be misunderstood. Choosing a colormap is a complex task, and rainbow colormaps can be useful for selected applications.

5.
IEEE Trans Vis Comput Graph ; 29(1): 257-267, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155440

RESUMO

Fostering data visualization literacy (DVL) as part of childhood education could lead to a more data literate society. However, most work in DVL for children relies on a more formal educational context (i.e., a teacher-led approach) that limits children's engagement with data to classroom-based environments and, consequently, children's ability to ask questions about and explore data on topics they find personally meaningful. We explore how a curiosity-driven, child-led approach can provide more agency to children when they are authoring data visualizations. This paper explores how informal learning with crafting physicalizations through play and curiosity may foster increased literacy and engagement with data. Employing a constructionist approach, we designed a do-it-yourself toolkit made out of everyday materials (e.g., paper, cardboard, mirrors) that enables children to create, customize, and personalize three different interactive visualizations (bar, line, pie). We used the toolkit as a design probe in a series of in-person workshops with 5 children (6 to 11-year-olds) and interviews with 5 educators. Our observations reveal that the toolkit helped children creatively engage and interact with visualizations. Children with prior knowledge of data visualization reported the toolkit serving as more of an authoring tool that they envision using in their daily lives, while children with little to no experience found the toolkit as an engaging introduction to data visualization. Our study demonstrates the potential of using the constructionist approach to cultivate children's DVL through curiosity and play.


Assuntos
Comportamento Exploratório , Alfabetização , Humanos , Gráficos por Computador , Visualização de Dados
6.
J Exp Psychol Appl ; 28(4): 717-745, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35175091

RESUMO

Design plays a key role in the interpretability of complex visualizations. Many applied domains utilize large quantities of data to make predictions, ranging from maps showing the spread of infectious disease to line graphs displaying global temperature changes. These visualizations tap into the visual system's ability to extract information from groups of similar objects, a process known as ensemble processing, and the cognitive system's ability to relate visual features such as color to meaningful concepts such as disease or temperature. Visualizations must consider both perceptual and cognitive abilities. It remains unclear which best improves comprehension: visualizations designed to exploit ensemble processes or that use semantically resonant colors that align with the underlying data. To address this question, participants were shown visualizations designed for ensemble processes in that they used color encodings with only a single hue or designed for semantic processes in that they prioritized color alignment with the meaning of the data. Participants viewed stripplots using these colors and judged whether the temperature depicted in the graphs was increasing or decreasing. As quantified using the signal detection measure d', participants' sensitivity to trend information was higher with the single-hue palettes than with more semantically expressive multihue palettes. Our results suggest that visualizations may convey trend information more effectively by selecting colors that exploit ensemble processes rather than selecting semantically compatible colors. Moreover, our results showed semantic compatibility had no effect on sensitivity to trend direction. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Biodiversidade , Cognição , Humanos , Temperatura , Compreensão
7.
IEEE Trans Vis Comput Graph ; 28(1): 654-664, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648448

RESUMO

Problem-driven visualization work is rooted in deeply understanding the data, actors, processes, and workflows of a target domain. However, an individual's personality traits and cognitive abilities may also influence visualization use. Diverse user needs and abilities raise natural questions for specificity in visualization design: Could individuals from different domains exhibit performance differences when using visualizations? Are any systematic variations related to their cognitive abilities? This study bridges domain-specific perspectives on visualization design with those provided by cognition and perception. We measure variations in visualization task performance across chemistry, computer science, and education, and relate these differences to variations in spatial ability. We conducted an online study with over 60 domain experts consisting of tasks related to pie charts, isocontour plots, and 3D scatterplots, and grounded by a well-documented spatial ability test. Task performance (correctness) varied with profession across more complex visualizations (isocontour plots and scatterplots), but not pie charts, a comparatively common visualization. We found that correctness correlates with spatial ability, and the professions differ in terms of spatial ability. These results indicate that domains differ not only in the specifics of their data and tasks, but also in terms of how effectively their constituent members engage with visualizations and their cognitive traits. Analyzing participants' confidence and strategy comments suggests that focusing on performance neglects important nuances, such as differing approaches to engage with even common visualizations and potential skill transference. Our findings offer a fresh perspective on discipline-specific visualization with specific recommendations to help guide visualization design that celebrates the uniqueness of the disciplines and individuals we seek to serve.

8.
IEEE Trans Vis Comput Graph ; 28(1): 987-997, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596541

RESUMO

Scatterplots can encode a third dimension by using additional channels like size or color (e.g. bubble charts). We explore a potential misinterpretation of trivariate scatterplots, which we call the weighted average illusion, where locations of larger and darker points are given more weight toward x- and y-mean estimates. This systematic bias is sensitive to a designer's choice of size or lightness ranges mapped onto the data. In this paper, we quantify this bias against varying size/lightness ranges and data correlations. We discuss possible explanations for its cause by measuring attention given to individual data points using a vision science technique called the centroid method. Our work illustrates how ensemble processing mechanisms and mental shortcuts can significantly distort visual summaries of data, and can lead to misjudgments like the demonstrated weighted average illusion.

9.
IEEE Comput Graph Appl ; 41(1): 49-57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444130

RESUMO

Our world is a complex ecosystem of interdependent processes. Geoscientists collect individual datasets addressing hyperspecific questions, which seek to probe these deeply intertwined processes. Scientists are beginning to explore how investigating relationships between disciplines can foster richer and more holistic research, but visualization tools are conventionally designed to address hyperspecific, rather than holistic, analysis. Bridging the vast wealth of available data will require new tools. Visualization has the potential to support holistic cross-disciplinary analysis to understand the complex innerworkings of our world, but doing so requires a paradigm shift to understand how visualization might enable lines of inquiry transcending traditional disciplinary boundaries. We present challenges for visualization in fostering such holistic geoscience analyses.

10.
IEEE Trans Vis Comput Graph ; 27(2): 1032-1042, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33048735

RESUMO

Color mapping is a foundational technique for visualizing scalar data. Prior literature offers guidelines for effective colormap design, such as emphasizing luminance variation while limiting changes in hue. However, empirical studies of color are largely focused on perceptual tasks. This narrow focus inhibits our understanding of how generalizable these guidelines are, particularly to tasks like visual inference that require synthesis and judgement across multiple percepts. Furthermore, the emphasis on traditional ramp designs (e.g., sequential or diverging) may sideline other key metrics or design strategies. We study how a cognitive metric-color name variation-impacts people's ability to make model-based judgments. In two graphical inference experiments, participants saw a series of color-coded scalar fields sampled from different models and assessed the relationships between these models. Contrary to conventional guidelines, participants were more accurate when viewing colormaps that cross a variety of uniquely nameable colors. We modeled participants' performance using this metric and found that it provides a better fit to the experimental data than do existing design principles. Our findings indicate cognitive advantages for colorful maps like rainbow, which exhibit high color categorization, despite their traditionally undesirable perceptual properties. We also found no evidence that color categorization would lead observers to infer false data features. Our results provide empirically grounded metrics for predicting a colormap's performance and suggest alternative guidelines for designing new quantitative colormaps to support inference. The data and materials for this paper are available at: https://osf.io/tck2r/.

11.
IEEE Trans Vis Comput Graph ; 27(2): 1117-1127, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33090954

RESUMO

A growing number of efforts aim to understand what people see when using a visualization. These efforts provide scientific grounding to complement design intuitions, leading to more effective visualization practice. However, published visualization research currently reflects a limited set of available methods for understanding how people process visualized data. Alternative methods from vision science offer a rich suite of tools for understanding visualizations, but no curated collection of these methods exists in either perception or visualization research. We introduce a design space of experimental methods for empirically investigating the perceptual processes involved with viewing data visualizations to ultimately inform visualization design guidelines. This paper provides a shared lexicon for facilitating experimental visualization research. We discuss popular experimental paradigms, adjustment types, response types, and dependent measures used in vision science research, rooting each in visualization examples. We then discuss the advantages and limitations of each technique. Researchers can use this design space to create innovative studies and progress scientific understanding of design choices and evaluations in visualization. We highlight a history of collaborative success between visualization and vision science research and advocate for a deeper relationship between the two fields that can elaborate on and extend the methodological design space for understanding visualization and vision.

12.
IEEE Trans Vis Comput Graph ; 26(1): 503-513, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425088

RESUMO

Data collection and analysis in the field is critical for operations in domains such as environmental science and public safety. However, field workers currently face data- and platform-oriented issues in efficient data collection and analysis in the field, such as limited connectivity, screen space, and attentional resources. In this paper, we explore how visual analytics tools might transform field practices by more deeply integrating data into these operations. We use a design probe coupling mobile, cloud, and immersive analytics components to guide interviews with ten experts from five domains to explore how visual analytics could support data collection and analysis needs in the field. The results identify shortcomings of current approaches and target scenarios and design considerations for future field analysis systems. We embody these findings in FieldView, an extensible, open-source prototype designed to support critical use cases for situated field analysis. Our findings suggest the potential for integrating mobile and immersive technologies to enhance data's utility for various field operations and new directions for visual analytics tools to transform fieldwork.

13.
IEEE Trans Vis Comput Graph ; 26(1): 1215-1225, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425090

RESUMO

Visualizations often encode numeric data using sequential and diverging color ramps. Effective ramps use colors that are sufficiently discriminable, align well with the data, and are aesthetically pleasing. Designers rely on years of experience to create high-quality color ramps. However, it is challenging for novice visualization developers that lack this experience to craft effective ramps as most guidelines for constructing ramps are loosely defined qualitative heuristics that are often difficult to apply. Our goal is to enable visualization developers to readily create effective color encodings using a single seed color. We do this using an algorithmic approach that models designer practices by analyzing patterns in the structure of designer-crafted color ramps. We construct these models from a corpus of 222 expert-designed color ramps, and use the results to automatically generate ramps that mimic designer practices. We evaluate our approach through an empirical study comparing the outputs of our approach with designer-crafted color ramps. Our models produce ramps that support accurate and aesthetically pleasing visualizations at least as well as designer ramps and that outperform conventional mathematical approaches.

14.
IEEE Comput Graph Appl ; 39(4): 78-85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31226061

RESUMO

Promoting a wider range of contribution types can facilitate healthy growth of the visualization community, while increasing the intellectual diversity of visualization research papers. In this paper, we discuss the importance of contribution types and summarize contribution types that can be meaningful in visualization research. We also propose several concrete next steps we can and should take to ensure a successful launch of the contribution types.

15.
Artigo em Inglês | MEDLINE | ID: mdl-30136964

RESUMO

Many real-world datasets are incomplete due to factors such as data collection failures or misalignments between fused datasets. Visualizations of incomplete datasets should allow analysts to draw conclusions from their data while effectively reasoning about the quality of the data and resulting conclusions. We conducted a pair of crowdsourced studies to measure how the methods used to impute and visualize missing data may influence analysts' perceptions of data quality and their confidence in their conclusions. Our experiments used different design choices for line graphs and bar charts to estimate averages and trends in incomplete time series datasets. Our results provide preliminary guidance for visualization designers to consider when working with incomplete data in different domains and scenarios.

16.
IEEE Trans Vis Comput Graph ; 24(1): 392-401, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866544

RESUMO

Color is frequently used to encode values in visualizations. For color encodings to be effective, the mapping between colors and values must preserve important differences in the data. However, most guidelines for effective color choice in visualization are based on either color perceptions measured using large, uniform fields in optimal viewing environments or on qualitative intuitions. These limitations may cause data misinterpretation in visualizations, which frequently use small, elongated marks. Our goal is to develop quantitative metrics to help people use color more effectively in visualizations. We present a series of crowdsourced studies measuring color difference perceptions for three common mark types: points, bars, and lines. Our results indicate that peoples' abilities to perceive color differences varies significantly across mark types. Probabilistic models constructed from the resulting data can provide objective guidance for designers, allowing them to anticipate viewer perceptions in order to inform effective encoding design.

17.
J Vis ; 16(5): 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982369

RESUMO

Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.


Assuntos
Interpretação Estatística de Dados , Processamento Espacial/fisiologia , Percepção Visual/fisiologia , Humanos
18.
IEEE Trans Vis Comput Graph ; 22(9): 2107-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26584495

RESUMO

Color is a common channel for displaying data in surface visualization, but is affected by the shadows and shading used to convey surface depth and shape. Understanding encoded data in the context of surface structure is critical for effective analysis in a variety of domains, such as in molecular biology. In the physical world, lightness constancy allows people to accurately perceive shadowed colors; however, its effectiveness in complex synthetic environments such as surface visualizations is not well understood. We report a series of crowdsourced and laboratory studies that confirm the existence of lightness constancy effects for molecular surface visualizations using ambient occlusion. We provide empirical evidence of how common visualization design decisions can impact viewers' abilities to accurately identify encoded surface colors. These findings suggest that lightness constancy aids in understanding color encodings in surface visualization and reveal a correlation between visualization techniques that improve color interpretation in shadow and those that enhance perceptions of surface depth. These results collectively suggest that understanding constancy in practice can inform effective visualization design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...