Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(6): 3217-3230, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28100698

RESUMO

Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/metabolismo , Proteína de Replicação A/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Humanos , Modelos Moleculares , Ligação Proteica , Proteína de Replicação A/química
2.
Cell Cycle ; 15(20): 2766-79, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27590262

RESUMO

The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca(2+), a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11.


Assuntos
Reparo do DNA/genética , Genoma Humano , Recombinação Homóloga/genética , Rad51 Recombinase/metabolismo , Proteínas S100/metabolismo , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular , Aberrações Cromossômicas , Dano ao DNA/genética , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Proteínas Mutantes/metabolismo , Ligação Proteica/genética
3.
Nucleic Acids Res ; 43(5): 2958-67, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25712103

RESUMO

The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical 'wings' of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Hidrólise , Espectroscopia de Ressonância Magnética , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
4.
Nucleic Acids Res ; 42(7): 4450-62, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500197

RESUMO

Transcription and DNA replication are tightly regulated to ensure coordination of gene expression with growth conditions and faithful transmission of genetic material to progeny. A large body of evidence has accumulated, indicating that encounters between protein machineries carrying out DNA and RNA synthesis occur in vivo and may have important regulatory consequences. This feature may be exacerbated in the case of compact genomes, like the one of bacteriophage λ, used in our study. Transcription that starts at the rightward pR promoter and proceeds through the λ origin of replication and downstream of it was proven to stimulate the initiation of λ DNA replication. Here, we demonstrate that the activity of a convergently oriented pO promoter decreases the efficiency of transcription starting from pR. Our results show, however, that a lack of the functional pO promoter negatively influences λ phage and λ-derived plasmid replication. We present data, suggesting that this effect is evoked by the enhanced level of the pR-driven transcription, occurring in the presence of the defective pO, which may result in the impeded formation of the replication initiation complex. Our data suggest that the cross talk between the two promoters regulates λ DNA replication and coordinates transcription and replication processes.


Assuntos
Bacteriófago lambda/genética , Replicação do DNA , Regiões Promotoras Genéticas , Transcrição Gênica , DNA Viral/biossíntese , Mutação , Plasmídeos/biossíntese , Origem de Replicação , Proteínas Virais/metabolismo
5.
Nucleic Acids Res ; 42(4): 2308-19, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24293646

RESUMO

The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3' protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3'-5' polarity and, thereby acts as a molecular 'wedge' to initiate DNA strand displacement.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , DNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
6.
Nucleic Acids Res ; 39(1): 168-77, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20833633

RESUMO

Transcription proceeding downstream of the λ phage replication origin was previously shown to support initial steps of the λ primosome assembly in vitro and to regulate frequency and directionality of λ DNA replication in vivo. In this report, the data are presented indicating that the RNA polymerase ß subunit makes a direct contact with the λO protein, a replication initiator of λ phage. These results suggest that the role of RNA polymerase during the initiation of λ phage DNA replication may be more complex than solely influencing DNA topology. Results demonstrated in this study also show that gyrase supercoiling activity stimulates the formation of a complex between λO and RNA polymerase, suggesting that the introduction of negative supercoils by DNA gyrase, besides lowering the energy required for DNA strand separation, may play an additional role in modeling protein-protein interactions at early steps of DNA replication initiation.


Assuntos
Bacteriófago lambda/genética , Replicação do DNA , DNA Viral/biossíntese , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , DNA Girase/metabolismo , DNA Viral/metabolismo , Escherichia coli/enzimologia
7.
Arch Microbiol ; 192(8): 673-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20559623

RESUMO

In Escherichia coli hosts, hydrogen peroxide is one of the factors that may cause induction of lambda prophage. Here, we demonstrate that H2O2-mediated lambda prophage induction is significantly enhanced in the oxyR mutant host. The mRNA levels for cI gene expression were increased in a lambda lysogen in the presence of H2O2. On the other hand, stimulation of the p(M) promoter by cI857 overproduced from a multicopy plasmid was decreased in the DeltaoxyR mutant in the presence of H2O2 but not under normal growth conditions. The purified OxyR protein did bind specifically to the p(M) promoter region. This binding impaired efficiency of interaction of the cI protein with the OR3 site, while stimulating such a binding to OR2 and OR1 sites, in the regulatory region of the p(M) promoter. We propose that changes in cI gene expression, perhaps in combination with moderately induced SOS response, may be responsible for enhanced lambda prophage induction by hydrogen peroxide in the oxyR mutant. Therefore, OxyR seems to be a factor stimulating lambda prophage maintenance under conditions of oxidative stress. This proposal is discussed in the light of efficiency of induction of lambdoid prophages bearing genes coding for Shiga toxins.


Assuntos
Bacteriófago lambda/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/virologia , Peróxido de Hidrogênio/farmacologia , Proteínas Repressoras/metabolismo , Ativação Viral , Bacteriófago lambda/efeitos dos fármacos , Sequência de Bases , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Viral da Expressão Gênica , Dados de Sequência Molecular , Estresse Oxidativo , Regiões Promotoras Genéticas , Prófagos/efeitos dos fármacos , Prófagos/fisiologia , Proteínas Repressoras/genética , Resposta SOS em Genética
8.
Microbiology (Reading) ; 153(Pt 5): 1653-1663, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17464080

RESUMO

SeqA protein, a main negative regulator of the replication initiation of the Escherichia coli chromosome, also has several other functions which are still poorly understood. It was demonstrated previously that in seqA mutants the copy number of another replicon, the lambda plasmid, is decreased, and that the activity of the lambda p(R) promoter (whose function is required for stimulation of ori lambda) is lower than that in the wild-type host. Here, SeqA-mediated regulation of lambda phage and plasmid replicons was investigated in more detail. No significant influence of SeqA on ori lambda-dependent DNA replication in vitro was observed, indicating that a direct regulation of lambda DNA replication by this protein is unlikely. On the other hand, density-shift experiments, in which the fate of labelled lambda DNA was monitored after phage infection of host cells, strongly suggested the early appearance of sigma replication intermediates and preferential rolling-circle replication of phage DNA in seqA mutants. The directionality of lambda plasmid replication in such mutants was, however, only slightly affected. The stability of the heritable lambda replication complex was decreased in the seqA mutant relative to the wild-type host, but a stable fraction of the lambda O protein was easily detectable, indicating that such a heritable complex can function in the mutant. To investigate the influence of seqA gene function on heritable complex- and transcription-dependent lambda DNA replication, the efficiency of lambda plasmid replication in amino acid-starved relA seqA mutants was measured. Under these conditions, seqA dysfunction resulted in impairment of lambda plasmid replication. These results indicate that unlike oriC, SeqA modulates lambda DNA replication indirectly, most probably by influencing the stability of the lambda replication complex and the transcriptional activation of ori lambda.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Bacteriófago lambda/genética , Replicação do DNA/fisiologia , DNA Viral/biossíntese , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Plasmídeos/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Mutação , Origem de Replicação , Proteínas Virais/análise
9.
Nucleic Acids Res ; 35(7): 2311-20, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17389649

RESUMO

The bacteriophage lambda p(M) promoter is required for maintenance of the lambda prophage in Escherichia coli, as it facilitates transcription of the cI gene, encoding the lambda repressor (CI). CI levels are maintained through a transcriptional feedback mechanism whereby CI can serve as an activator or a repressor of p(M). CI activates p(M) through cooperative binding to the O(R)1 and O(R)2 sites within the O(R) operator, with the O(R)2-bound CI dimer making contact with domain 4 of the RNA polymerase sigma subunit (sigma(4)). Here we demonstrate that the 261 and 287 determinants of the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD), as well as the DNA-binding determinant, are important for CI-dependent activation of p(M). We also show that the location of alphaCTD at the p(M) promoter changes in the presence of CI. Thus, in the absence of CI, one alphaCTD is located on the DNA at position -44 relative to the transcription start site, whereas in the presence of CI, alphaCTD is located at position -54, between the CI-binding sites at O(R)1 and O(R)2. These results suggest that contacts between CI and both alphaCTD and sigma are required for efficient CI-dependent activation of p(M).


Assuntos
Bacteriófago lambda/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Ativação Transcricional , Proteínas Virais/metabolismo , Substituição de Aminoácidos , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Estrutura Terciária de Proteína , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...