Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(50): 27493-27499, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059304

RESUMO

Ultrasmall Pd4 clusters form in the micropores of FER zeolite during low-temperature treatment (100 °C) in the presence of humid CO gas. They effectively catalyze CO oxidation below 100 °C, whereas Pd nanoparticles are not active as they are poisoned by CO. Using catalytic measurements, infrared (IR) spectroscopy, X-ray absorption spectroscopy (EXAFS), microscopy, and density functional theory calculations, we provide the molecular-level insight into this previously unreported phenomenon. Pd nanoparticles get covered with CO at low temperatures, which effectively blocks O2 activation until CO desorption occurs. Small Pd clusters in zeolites, in contrast, demonstrate fluxional behavior in the presence of CO, which significantly increases the affinity for binding O2. Our study provides a pathway to achieve low-temperature CO oxidation activity on the basis of a well-defined Pd/zeolite system.

2.
J Am Chem Soc ; 145(19): 10847-10860, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145876

RESUMO

Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, ∼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, ∼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.

3.
J Am Chem Soc ; 145(9): 5029-5040, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812067

RESUMO

Atom trapping leads to catalysts with atomically dispersed Ru1O5 sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 is stable during continuous cycling, ramping, and cooling as well as the presence of moisture. Furthermore, Ru1/CeO2 shows very high NOx storage properties due to formation of stable Ru-NO complexes as well as a high spill-over rate of NOx onto CeO2. Only ∼0.05 wt % of Ru is required for excellent NOx storage. Ru1O5 sites exhibit much higher stability during calcination in air/steam up to 750 °C in contrast to RuO2 nanoparticles. We clarify the location of Ru(II) ions on the ceria surface and experimentally identify the mechanism of NO storage and oxidation using DFT calculations and in situ DRIFTS/mass spectroscopy. Moreover, we show excellent reactivity of Ru1/CeO2 for NO reduction by CO at low temperatures: only 0.1-0.5 wt % of Ru is sufficient to achieve high activity. Modulation-excitation in situ infrared and XPS measurements reveal the individual elementary steps of NO reduction by CO on an atomically dispersed Ru ceria catalyst, highlighting unique properties of Ru1/CeO2 and its propensity to form oxygen vacancies/Ce+3 sites that are critical for NO reduction, even at low Ru loadings. Our study highlights the applicability of novel ceria-based single-atom catalysts to NO and CO abatement.

4.
Chem Sci ; 13(35): 10383-10394, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277641

RESUMO

Cu/zeolites efficiently catalyze selective reduction of environmentally harmful nitric oxide with ammonia. Despite over a decade of research, the exact NO reduction steps remain unknown. Herein, using a combined spectroscopic, catalytic and DFT approach, we show that nitrosyl ions (NO+) in zeolitic micropores are the key intermediates for NO reduction. Remarkably, they react with ammonia even below room temperature producing molecular nitrogen (the reaction central to turning the NO pollutant to benign nitrogen) through the intermediacy of the diazo N2H+ cation. Experiments with isotopically labeled N-compounds confirm our proposed reaction path. No copper is required for N2 formation to occur during this step. However, at temperatures below 100 °C, when NO+ reacts with NH3, the bare Brønsted acid site becomes occupied by NH3 to form strongly bound NH4 +, and consequently, this stops the catalytic cycle, because NO+ cannot form on NH4-zeolites when their H+ sites are already occupied by NH4 +. On the other hand, we show that the reaction becomes catalytic on H-zeolites at temperatures when some ammonia desorption can occur (>120 °C). We suggest that the role of Cu(ii) ions in Cu/zeolite catalysts for low-temperature NO reduction is to produce abundant NO+ by the reaction: Cu(ii) + NO → Cu(i)⋯NO+. NO+ then reacts with ammonia to produce nitrogen and water. Furthermore, when Cu(i) gets re-oxidized, the catalytic cycle can then continue. Our findings provide novel understanding of the hitherto unknown steps of the SCR mechanism pertinent to N-N coupling. The observed chemistry of Cu ions in zeolites bears striking resemblance to the copper-containing denitrification and annamox enzymes, which catalyze transformation of NO x species to N2, via di-azo compounds.

5.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408748

RESUMO

Steamed zeolites exhibit improved catalytic properties for hydrocarbon activation (alkane cracking and dehydrogenation). The nature of this practically important phenomenon has remained a mystery for the last six decades and was suggested to be related to the increased strength of zeolitic Bronsted acid sites after dealumination. We now utilize state-of-the-art infrared spectroscopy measurements and prove that during steaming, aluminum oxide clusters evolve (due to hydrolysis of Al out of framework positions with the following clustering) in the zeolitic micropores with properties very similar to (nano) facets of hydroxylated transition alumina surfaces. The Bronsted acidity of the zeolite does not increase and the total number of Bronsted acid sites decreases during steaming. O5Al(VI)-OH surface sites of alumina clusters dehydroxylate at elevated temperatures to form penta-coordinate Al1O5 sites that are capable of initiating alkane cracking by breaking the first C-H bond very effectively with much lower barriers (at lower temperatures) than for protolytic C-H bond activation, with the following reaction steps catalyzed by nearby zeolitic Bronsted acid sites. This explains the underlying mechanism behind the improved alkane cracking and alkane dehydrogenation activity of steamed zeolites: heterolytic C-H bond breaking occurs on Al-O sites of aluminum oxide clusters confined in zeolitic pores. Our findings explain the origin of enhanced activity of steamed zeolites at the molecular level and provide the missing understanding of the nature of extra-framework Al species formed in steamed/dealuminated zeolites.

6.
Angew Chem Int Ed Engl ; 61(3): e202107554, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34617372

RESUMO

Pd-loaded FER and SSZ-13 zeolites as low-temperature passive NOx adsorbers (PNA) are compared under practical conditions. Vehicle cold start exposes the material to CO under a range of concentrations, necessitating a systematic exploration of the effect of CO on the performance of isolated Pd ions in PNA. The NO release temperature of both adsorbers decreases gradually with an increase in CO concentration from a few hundred to a few thousand ppm. This beneficial effect results from local nano-"hot spot" formation during CO oxidation. Dissimilar to Pd/SSZ-13, increasing the CO concentration above ≈1000 ppm improves the NOx storage significantly for Pd/FER, which was attributed to the presence of Pd ions in FER sites that are shielded from NOx. CO mobilizes this Pd atom to the NOx accessible position where it becomes active for PNA. This behavior explains the very high resistance of Pd/FER to hydrothermal aging: Pd/FER materials survive hydrothermal aging at 800 °C in 10 % H2 O vapor for 16 hours with no deterioration in NOx uptake/release behavior. Thus, by allocating Pd ions to the specific microporous pockets in FER, we have produced (hydro)thermally stable and active PNA materials.

7.
Nat Commun ; 12(1): 6033, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654809

RESUMO

CO oxidation is of importance both for inorganic and living systems. Transition and precious metals supported on various materials can oxidize CO to CO2. Among them, few systems, such as Au/TiO2, can perform CO oxidation at temperatures as low as -70 °C. Living (an)aerobic organisms perform CO oxidation with nitrate using complex enzymes under ambient temperatures representing an essential pathway for life, which enables respiration in the absence of oxygen and leads to carbonate mineral formation. Herein, we report that CO can be oxidized to CO2 by nitrate at -140 °C within an inorganic, nonmetallic zeolitic system. The transformation of NOx and CO species in zeolite as well as the origin of this unique activity is clarified using a joint spectroscopic and computational approach.

8.
JACS Au ; 1(4): 396-408, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467303

RESUMO

Industrial low-temperature methane combustion catalyst Pd/Al2O3 suffers from H2O-induced deactivation. It is imperative to design Pd catalysts free from this deactivation and with high atomic efficiency. Using a small-pore zeolite SSZ-13 as support, herein we report well-defined Pd catalysts with dominant active species as finely dispersed Pd cations, uniform PdO particles embedded inside the zeolite framework, or PdO particles decorating the zeolite external surface. Through detailed reaction kinetics and spectroscopic and microscopic studies, we show that finely dispersed sites are much less active than PdO nanoparticles. We further demonstrate that H2O-induced deactivation can be readily circumvented by using zeolite supports with high Si/Al ratios. Finally, we provide a few rational catalyst design suggestions for methane oxidation based on the new knowledge learned in this study.

9.
JACS Au ; 1(7): 977-986, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34467344

RESUMO

Single-atom catalysts (SACs) often exhibit dynamic responses to the reaction and pretreatment environment that affect their activity. The lack of understanding of these behaviors hinders the development of effective, stable SACs, and makes their investigations rather difficult. Here we report a reduction-oxidation cycle that induces nearly 5-fold activity enhancement on Pt/TiO2 SACs for the reverse water-gas shift (rWGS) reaction. We combine microscopy (STEM) and spectroscopy (XAS and IR) studies with kinetic measurements, to convincingly show that the low activity on the fresh SAC is a result of limited accessibility of Pt single atoms (Pt1) due to high Pt-O coordination. The reduction step mobilizes Pt1, forming small, amorphous, and unstable Pt aggregates. The reoxidation step redisperses Pt into Pt1, but in a new, less O-coordinated chemical environment that makes the single metal atoms more accessible and, consequently, more active. After the cycle, the SAC exhibits superior rWGS activity to nonatomically dispersed Pt/TiO2. During the rWGS, the activated Pt1 experience slow deactivation, but can be reactivated by mild oxidation. This work demonstrates a clear picture of how the structural evolution of Pt/TiO2 SACs leads to ultimate catalytic efficiency, offering desired understanding on the rarely explored dynamic chemical environment of supported single metal atoms and its catalytic consequences.

10.
Angew Chem Int Ed Engl ; 60(42): 22769-22775, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34180114

RESUMO

The analogy between single-atom catalysts (SACs) and molecular catalysts predicts that the specific catalytic activity of these systems is constant. We provide evidence that this prediction is not necessarily true. As a case in point, we show that the specific activity over ceria-supported single Pd atoms linearly increases with metal atom density, originating from the cumulative enhancement of CeO2 reducibility. The long-range electrostatic footprints (≈1.5 nm) around each Pd site overlap with each other as surface Pd density increases, resulting in an observed deviation from constant specific activity. These cooperative effects exhaust previously active O atoms above a certain Pd density, leading to their permanent removal and a consequent drop in reaction rate. The findings of our combined experimental and computational study show that the specific catalytic activity of reducible oxide-supported single-atom catalysts can be tuned by varying the surface density of single metal atoms.

11.
Angew Chem Int Ed Engl ; 60(32): 17522-17530, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33904227

RESUMO

γ-alumina is one of the oldest and most important commercial catalytic materials with high surface area and stability. These attributes enabled its use as the first commercial large-scale heterogeneous catalyst for ethanol dehydration. Despite progress in materials characterization the nature of the specific sites on the surface of γ-alumina that are responsible for its unique catalytic properties has remained obscure and controversial. By using combined infrared spectroscopy, electron microscopy and solid-state nuclear magnetic resonance measurements we identify the octahedral, amphoteric (O)5 Al(VI)-OH sites on the (100) segments of massively restructured (110) facets on typical rhombus-platelet γ-alumina as well as the (100) segments of irrational surfaces (invariably always present in all γ-alumina samples) responsible for its unique catalytic activity. Such (O)5 Al(VI)-OH sites are also present on the macroscopically defined (100) facets of γ-alumina with elongated/rod-like geometry. The mechanism by which these sites lose -OH groups upon thermal dehydroxylation resulting in coordinatively unsaturated penta-coordinate Al+3 O5 sites is clarified. These coordinatively unsaturated penta-coordinate Al sites produce well-defined thermally stable Al-carbonyl complexes. Our findings contribute to the understanding of the nature of coordinatively unsaturated Al sites on the surface of γ-alumina and their role as catalytically active sites.

12.
J Am Chem Soc ; 143(14): 5540-5549, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33819019

RESUMO

Single-atom catalysts are often reported to have catalytic properties that surpass those of nanoparticles, while a direct comparison of sites common and different for both is lacking. Here we show that single atoms of Pt-group metals embedded into the surface of Fe3O4 have a greatly enhanced interaction strength with CO2 compared with the Fe3O4 surface. The strong CO2 adsorption on single Rh atoms and corresponding low activation energies lead to 2 orders of magnitude higher conversion rates of CO2 compared to Rh nanoparticles. This high activity of single atoms stems from the partially oxidic state imposed by their coordination to the support. Fe3O4-supported Rh nanoparticles follow the behavior of single atoms for CO2 interaction and reduction, which is attributed to the dominating role of partially oxidic sites at the Fe3O4-Rh interface. Thus, we show a likely common catalytic chemistry for two kinds of materials thought to be different, and we show that single atoms of Pt-group metals on Fe3O4 are especially successful materials for catalyzed reactions that depend primarily upon sites with the metal-O-Fe environment.

13.
J Am Chem Soc ; 143(11): 4268-4280, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33661617

RESUMO

Controlling the selectivity of CO2 hydrogenation catalysts is a fundamental challenge. In this study, the selectivity of supported Ni catalysts prepared by the traditional impregnation method was found to change after a first CO2 hydrogenation reaction cycle from 100 to 800 °C. The usually high CH4 formation was suppressed leading to full selectivity toward CO. This behavior was also observed after the catalyst was treated under methane or propane atmospheres at elevated temperatures. In situ spectroscopic studies revealed that the accumulation of carbon species on the catalyst surface at high temperatures leads to a nickel carbide-like phase. The catalyst regains its high selectivity to CH4 production after carbon depletion from the surface of the Ni particles by oxidation. However, the selectivity readily shifts back toward CO formation after exposing the catalysts to a new temperature-programmed CO2 hydrogenation cycle. The fraction of weakly adsorbed CO species increases on the carbide-like surface when compared to a clean nickel surface, explaining the higher selectivity to CO. This easy protocol of changing the surface of a common Ni catalyst to gain selectivity represents an important step for the commercial use of CO2 hydrogenation to CO processes toward high-added-value products.

14.
Angew Chem Int Ed Engl ; 60(1): 391-398, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32881353

RESUMO

We show for the first time that atomically dispersed Rh cations on ceria, prepared by a high-temperature atom-trapping synthesis, are the active species for the (CO+NO) reaction. This provides a direct link with the organometallic homogeneous RhI complexes capable of catalyzing the dry (CO+NO) reaction. The thermally stable Rh cations in 0.1 wt % Rh1 /CeO2 achieve full NO conversion with a turn-over-frequency (TOF) of around 330 h-1 per Rh atom at 120 °C. Under dry conditions, the main product above 100 °C is N2 with N2 O being the minor product. The presence of water promotes low-temperature activity of 0.1 wt % Rh1 /CeO2 . In the wet stream, ammonia and nitrogen are the main products above 120 °C. The uniformity of Rh ions on the support, allows us to detect the intermediates of (CO+NO) reaction via IR measurements on Rh cations on zeolite and ceria. We also show that NH3 formation correlates with the water gas shift (WGS) activity of the material and detect the formation of Rh hydride species spectroscopically.

15.
Angew Chem Int Ed Engl ; 59(48): 21719-21727, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32818311

RESUMO

High-temperature treatment of γ-Al2 O3 can lead to a series of polymorphic transformations, including the formation of δ-Al2 O3 and θ-Al2 O3 . Quantification of the microstructure in the range where δ- and θ-Al2 O3 are formed represents a formidable challenge, as both phases accommodate a high degree of structural disorder. In this work, we explore the use of an XRD recursive-stacking formalism for the quantification of high-temperature transition aluminas. We formulate the recursive-stacking methodology for modelling of disorder in δ-Al2 O3 and twinning in θ-Al2 O3 and show that explicitly accounting for the disorder is necessary to reliably model the XRD patterns of high-temperature transition alumina. We also use the recursive stacking approach to study phase transformation during high-temperature (1050 °C) treatment. We show that the two different intergrowth modes of δ-Al2 O3 have different transformation characteristics and that a significant portion of δ-Al2 O3 is stabilized with θ-Al2 O3 even after prolonged high-temperature exposures.

16.
Data Brief ; 31: 105877, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637488

RESUMO

The groundwater of volcanic aquifers, dissected by various structures and affected by several volcanic eruption events, varies in quality. A large number of rural people depend on shallow aquifers tapped by shallow hand wells and springs. On the other hand, the urban population is dependant on deep aquifers using drilled boreholes. The location of springs, shallow hand-dug wells and boreholes inside or close to farmlands, and the advancement of irrigation water use from groundwater by the government entail the assessment of groundwater quality. Therefore, the focus of the present study is to determine the quality and suitability of groundwater around Dangila Town, Northwest Ethiopia, for drinking and irrigation uses. The water quality assessment was conducted by collecting groundwater samples from 14 shallow hand-dug wells, 4 springs, and 7 deep boreholes then analysing for different physical and chemical parameters. A total of 25 selected groundwater samples from shallow and deep aquifers were analysed in a laboratory for physical and chemical parameters. The physical parameters measured both in the field and the laboratory included pH, electrical conductivity (EC) and total dissolved solids (TDS). The chemical parameters analysed in the laboratory comprised cations of calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K +), Iron (Fe), manganese (Mn2+) and anions of bicarbonate (HCO3 -), sulfate (SO4 2-), carbonate (CO3 2-), chlorine (Cl-), nitrate (NO3 -), fluoride (F-), and boron (B). Based on the laboratory results, the variation in groundwater facies, and major cation and anion sources were determined. Furthermore, the groundwater quality for human consumption was assessed and sodium adsorption ratio (SAR), Na%, and the residual sodium carbonate (RSC) values, which are crucial to determine the overall groundwater quality for irrigational uses, were calculated. Detailed interpretations of the data have been presented in the paper entitled "Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area, Northwest Ethiopia" [1]. The presented dataset demonstrates the necessity of water quality assessments that would be helpful to water sectors, government, and policymakers for sustainable groundwater management.

17.
Angew Chem Int Ed Engl ; 59(40): 17657-17663, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32589820

RESUMO

The application of single-atom catalysts (SACs) to high-temperature hydrogenation requires materials that thermodynamically favor metal atom isolation over cluster formation. We demonstrate that Pd can be predominantly dispersed as isolated atoms onto TiO2 during the reverse water-gas shift (rWGS) reaction at 400 °C. Achieving atomic dispersion requires an artificial increase of the absolute TiO2 surface area by an order of magnitude and can be accomplished by physically mixing a precatalyst (Pd/TiO2 ) with neat TiO2 prior to the rWGS reaction. The in situ dispersion of Pd was reflected through a continuous increase of rWGS activity over 92 h and supported by kinetic analysis, infrared and X-ray absorption spectroscopies and scanning transmission electron microscopy. The thermodynamic stability of Pd under high-temperature rWGS conditions is associated with Pd-Ti coordination, which manifests upon O-vacancy formation, and the artificial increase in TiO2 surface area.

18.
Nat Commun ; 10(1): 1137, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850592

RESUMO

Commercial Cu/SAPO-34 selective catalytic reduction (SCR) catalysts have experienced unexpected and quite perplexing failure. Understanding the causes at an atomic level is vital for the synthesis of more robust Cu/SAPO-34 catalysts. Here we show, via application of model catalysts with homogeneously dispersed isolated Cu ions, that Cu transformations resulting from low-temperature hydrothermal aging and ambient temperature storage can be semi-quantitatively probed with 2-dimensional pulsed electron paramagnetic resonance. Coupled with kinetics, additional material characterizations and DFT simulations, we propose the following catalyst deactivation steps: (1) detachment of Cu(II) ions from cationic positions in the form of Cu(OH)2; (2) irreversible hydrolysis of the SAPO-34 framework forming terminal Al species; and (3) interaction between Cu(OH)2 and terminal Al species forming SCR inactive, Cu-aluminate like species. Especially significant is that these reactions are greatly facilitated by condensed water molecules under wet ambient conditions, causing low temperature failure of the commercial Cu/SAPO-34 catalysts.

19.
Angew Chem Int Ed Engl ; 57(51): 16672-16677, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30328259

RESUMO

The majority of harmful atmospheric CO and NOx emissions are from vehicle exhausts. Although there has been success addressing NOx emissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOx emissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra-framework positions of the small-pore chabazite material as a CO and passive NOx adsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition-metal/SSZ-13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtII and PdII . Through spectroscopy and materials testing we show that both CO and NOx can be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl-nitrosyl palladium complex in chabazite micropore.

20.
Nat Commun ; 8(1): 513, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894155

RESUMO

Catalytic CO2 conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. Here we show the correlation between the kinetics of product formation and those of surface species conversion during CO2 reduction over Pd/Al2O3 catalysts. The operando transmission FTIR/SSITKA (Fourier transform infrared spectroscopy/steady-state isotopic transient kinetic analysis) experiments demonstrates that the rate-determining step for CO formation is the conversion of adsorbed formate, whereas that for CH4 formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivities to CH4 and CO. We apply this knowledge to the catalyst design and achieve high selectivities to desired products.Understanding the mechanism of CO2 reduction on a catalyst surface is essential for achieving the desired product selectivity. Here, the authors show an operando kinetic analysis of CO2 hydrogenation over a palladium catalyst in order to address the factors governing the selectivity of the process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...