Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Endocr Relat Cancer ; 30(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578265

RESUMO

Gastrointestinal stromal tumors (GISTs) are mesenchymal neoplasms, believed to originate from the interstitial cells of Cajal (ICC), often caused by overexpression of tyrosine kinase receptors (TKR) KIT or PDGFRA. Here, we present evidence that the embryonic stem cell factor FOXD3, first identified as 'Genesis' and involved in both gastrointestinal and neural crest cell development, is implicated in GIST pathogenesis; its involvement is investigated both in vitro and in zebrafish and a mouse model of FOXD3 deficiency. Samples from a total of 58 patients with wild-type GISTs were used for molecular analyses, including Sanger sequencing, comparative genomic hybridization, and methylation analysis. Immunohistochemistry and western blot evaluation were used to assess FOXD3 expression. Additionally, we conducted in vitro functional studies in tissue samples and in transfected cells to confirm the pathogenicity of the identified genetic variants. Germline partially inactivating FOXD3 sequence variants (p.R54H and p.Ala88_Gly91del) were found in patients with isolated GISTs. Chromosome 1p loss was the most frequent chromosomal abnormality identified in tumors. In vitro experiments demonstrate the impairment of FOXD3 in the presence of those variants. Animal studies showed disruption of the GI neural network and changes in the number and distribution in the ICC. FOXD3 suppresses KIT expression in human cells; its inactivation led to an increase in ICC in zebrafish, as well as mice, providing evidence for a functional link between FOXD3 defects and KIT overexpression leading to GIST formation.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Animais , Camundongos , Tumores do Estroma Gastrointestinal/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fator de Células-Tronco/genética , Hibridização Genômica Comparativa , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Transcrição/genética , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Mutação , Neoplasias Gastrointestinais/genética , Fatores de Transcrição Forkhead/genética
2.
Mol Cell Endocrinol ; 520: 111071, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127481

RESUMO

Phosphodiesterases catalyze the hydrolysis of cyclic nucleotides and maintain physiologic levels of intracellular concentrations of cyclic adenosine and guanosine mono-phosphate (cAMP and cGMP, respectively). Increased cAMP signaling has been associated with adrenocortical tumors and Cushing syndrome. Genetic defects in phosphodiesterase 11A (PDE11A) may lead to increased cAMP signaling and have been found to predispose to the development of adrenocortical, prostate, and testicular tumors. A previously reported Pde11a knockout (Pde11a-/-) mouse line was studied and found to express PDE11A mRNA and protein still, albeit at reduced levels; functional studies in various tissues showed increased cAMP levels and reduced PDE11A activity. Since patients with PDE11A defects and Cushing syndrome have PDE11A haploinsufficiency, it was particularly pertinent to study this hypomorphic mouse line. Indeed, Pde11a-/- mice failed to suppress corticosterone secretion in response to low dose dexamethasone, and in addition exhibited adrenal subcapsular hyperplasia with predominant fetal-like features in the inner adrenal cortex, mimicking other mouse models of increased cAMP signaling in the adrenal cortex. We conclude that a previously reported Pde11a-/- mouse showed continuing expression and function of PDE11A in most tissues. Nevertheless, Pde11a partial inactivation in mice led to an adrenocortical phenotype that was consistent with what we see in patients with PDE11A haploinsufficiency.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Córtex Suprarrenal/enzimologia , Córtex Suprarrenal/fisiologia , 3',5'-GMP Cíclico Fosfodiesterases/genética , Hormônio Adrenocorticotrópico/farmacologia , Animais , Corticosterona/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dexametasona/farmacologia , Feminino , Deleção de Genes , Hiperplasia , Masculino , Camundongos Knockout , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Mol Cell Endocrinol ; 522: 111117, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338547

RESUMO

PDE8B, PRKAR1A and the Wnt/ß-catenin signaling are involved in endocrine disorders. However, how PDEB8B interacts with both Wnt and protein kinase A (PKA) signaling in vivo remains unknown. We created a novel Pde8b knockout mouse line (Pde8b-/-); Pde8b haploinsufficient (Pde8b+/-) mice were then crossed with mice harboring: (1) constitutive beta-catenin activation (Pde8b+/-;ΔCat) and (2) Prkar1a haploinsufficieny (Pde8b+/-;Prkar1a+/-). Adrenals and testes from mice (3-12-mo) were evaluated in addition to plasma corticosterone, aldosterone and Dkk3 concentrations, and the examination of expression of steroidogenesis-, Wnt- and cAMP/PKA-related genes. Pde8b-/- male mice were infertile with down-regulation of the Wnt/ß-catenin pathway which did not change significantly in the Pde8b+/-;ΔCat mice. Prkar1a haploinsufficiency also did not change the phenotype significantly. In vitro studies showed that PDE8B knockdown upregulated the Wnt pathway and increased proliferation in CTNNB1-mutant cells, whereas it downregulated the Wnt pathway in PRKAR1A-mutant cells. These data support an overall weak, if any, role for PDE8B in adrenocortical tumorigenesis, even when co-altered with Wnt signaling or PKA upregulation; on the other hand, PDE8B appears to play a significant role in male fertility.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , Glândulas Suprarrenais/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Haploinsuficiência/genética , Infertilidade Masculina/genética , Esteroides/biossíntese , Proteínas Wnt/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/sangue , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/fisiopatologia , Aldosterona/sangue , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Corticosterona/sangue , Cruzamentos Genéticos , Dexametasona/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Infertilidade Masculina/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Testículo/efeitos dos fármacos , Testículo/ultraestrutura , beta Catenina/metabolismo
4.
Horm Metab Res ; 49(10): 786-792, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28834963

RESUMO

The adrenal cortex accumulates lipofuscin granules with age. Lipofuscin accumulation is also seen in adrenocortical tumors associated with Cushing syndrome (CS), particularly those with PRKAR1A mutations, such as in primary pigmented nodular adrenocortical disease (PPNAD). We investigated the presence of lipofuscin in cortisol-producing adenomas (CPAs) responsible for CS with and without the PRKACA (pLeu206Arg) somatic mutation. Ten paraffin-embedded sections of CPAs from cases with overt CS with (n=4) and without (n=6) a PRKACA mutation were microscopically examined through three detection methods, the hematoxylin-Eosin (H & E) staining, the Fontana Masson (FM) staining using light microscopy, and lipofuscin autofluorescence, using confocal laser scanning microscopy (CLSM). Sections were examined quantitatively according to the intensity of the pigmentation, as well as qualitatively based on the total number of granular pigments at all visual fields per tissue slide. Tissues from CPAs were compared to peritumoral adjacent tissues (n=5), to Conn adenomas (n=4), and PPNAD (n=3). CPAs had significantly higher number of lipofuscin-pigment granules compared to peritumoral adrenal tissue and Conn adenomas (46.9±9.5 vs. 3.8±4.8, p=0.0001). The presence of the PRKACA mutation did not increase the chances of pigmentation in the form of lipofuscin granules within CPAs associated with CS. Thus, all CPAs leading to CS accumulate lipofuscin, which presents like pigmentation sometimes seen macroscopically but always detected microscopically. PPNAD caused by PRKAR1A mutations is the best known adrenal lesion leading to CS associated with intense lipofuscin pigmentation and this was confirmed here; CPAs harboring PRKACA mutations did not have statistically significantly more pigmentation than CPAs without mutation, but a larger study might have shown a difference.


Assuntos
Adenoma/genética , Neoplasias do Córtex Suprarrenal/enzimologia , Neoplasias do Córtex Suprarrenal/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Hidrocortisona/biossíntese , Lipofuscina/metabolismo , Mutação/genética , Adenoma/enzimologia , Adenoma/patologia , Neoplasias do Córtex Suprarrenal/patologia , Adulto , Feminino , Fluorescência , Humanos , Pigmentação
5.
Endocr Relat Cancer ; 24(1): 31-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803029

RESUMO

Carney complex (CNC) is a rare disease associated with multiple neoplasias, including a predisposition to pancreatic tumors; it is caused most frequently by the inactivation of the PRKAR1A gene, a regulator of the cyclic AMP (cAMP)-dependent kinase (PKA). The method used was to create null alleles of prkar1a in mouse cells expressing pdx1 (Δ-Prkar1a). We found that these mice developed endocrine or mixed endocrine/acinar cell carcinomas with 100% penetrance by the age of 4-5 months. Malignant behavior of the tumors was seen as evidenced by stromal invasion and metastasis to locoregional lymph nodes. Histologically, most tumors exhibited an organoid pattern as seen in the islet-cell tumors. Biochemically, the lesions exhibited high PKA activity, as one would expect from deleting prkar1a The primary neuroendocrine nature of these tumor cells was confirmed by immunohistochemical staining and electron microscopy, the latter revealing the characteristic granules. Although the Δ-Prkar1a mice developed hypoglycemia after overnight fasting, insulin and glucagon levels in the plasma were normal. Negative immunohistochemical staining for the most commonly produced peptides (insulin, c-peptide, glucagon, gastrin and somatostatin) suggested that these tumors were non-functioning. We hypothesize that the recently identified multipotent pdx1+/insulin- cell in adult pancreas, gives rise to endocrine or mixed endocrine/acinar pancreatic malignancies with complete prkar1a deficiency. In conclusion, this mouse model supports the role of prkar1a as a tumor suppressor gene in the pancreas and points to the PKA pathway as a possible therapeutic target for these lesions.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Tumores Neuroendócrinos/genética , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Animais , Glicemia/análise , Carcinogênese , Complexo de Carney/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Insulina/sangue , Masculino , Camundongos Knockout , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia
6.
JCI Insight ; 1(15): e87958, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27699247

RESUMO

Primary pigmented nodular adrenocortical disease (PPNAD) is a rare cause of ACTH-independent hypercortisolism. The disease is primarily caused by germline mutations of the protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene, which induces constitutive activation of PKA in adrenocortical cells. Hypercortisolism is thought to result from PKA hyperactivity, but PPNAD tissues exhibit features of neuroendocrine differentiation, which may lead to stimulation of steroidogenesis by abnormally expressed neurotransmitters. We hypothesized that serotonin (5-HT) may participate in the pathophysiology of PPNAD-associated hypercortisolism. We show that PPNAD tissues overexpress the 5-HT synthesizing enzyme tryptophan hydroxylase type 2 (Tph2) and the serotonin receptors types 4, 6, and 7, leading to formation of an illicit stimulatory serotonergic loop whose pharmacological inhibition in vitro decreases cortisol production. In the human PPNAD cell line CAR47, the PKA inhibitor H-89 decreases 5-HT4 and 5-HT7 receptor expression. Moreover, in the human adrenocortical cell line H295R, inhibition of PRKAR1A expression increases the expression of Tph2 and 5-HT4/6/7 receptors, an effect that is blocked by H-89. These findings show that the serotonergic process observed in PPNAD tissues results from PKA activation by PRKAR1A mutations. They also suggest that Tph inhibitors may represent efficient treatments of hypercortisolism in patients with PPNAD.


Assuntos
Doenças do Córtex Suprarrenal/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Adolescente , Doenças do Córtex Suprarrenal/genética , Adulto , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Receptores de Serotonina/metabolismo , Transdução de Sinais , Adulto Jovem
7.
Eur J Hum Genet ; 24(4): 569-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26173966

RESUMO

Carney triad, the association of paragangliomas/pheochromocytomas, gastrointestinal stromal tumors and pulmonary chondromas, is a sporadic condition that is significantly more frequent in females; its genetic etiology remains unknown. Carney triad is distinct from the dyad of paragangliomas/pheochromocytomas and gastrointestinal stromal tumors, known as Carney-Stratakis syndrome, which is inherited in an autosomal- dominant manner and is almost always caused by succinate dehydrogenase subunit mutations. In the present study, we investigated the largest cohort of Carney triad patients that is available internationally: 63 unrelated patients. Six patients (9.5%) were found to have germline variants in the SDHA, SDHB or SDHC genes. All six patients, except one, had multifocal gastrointestinal stromal tumors, chondromas and/or paragangliomas. A patient with Carney triad and SDHC variant had a ganglioneuroma. One of the patients with Carney triad and SDHB mutation had a nephew with the same sequence defect, who developed a neuroblastoma. Other relatives, carriers of the identified SDHA, SDHB or SDHC mutations, have not developed any of the components of Carney triad or Carney-Stratakis syndrome. None of the other 57 Carney triad patients had any genomic defects of SDHA, SDHB or SDHC genes. We conclude that, in rare occasions, Carney triad can be allelic to Carney-Stratakis syndrome. Although for the vast majority of patients with Carney triad the causative defect(s) remain(s) unknown, testing for SDHA, SDHB or SDHC variations should be offered, as carriers may develop isolated paragangliomas/pheochromocytomas and occasionally other tumors.


Assuntos
Condroma/genética , Mutação em Linhagem Germinativa , Leiomiossarcoma/genética , Neoplasias Pulmonares/genética , Paraganglioma Extrassuprarrenal/genética , Neoplasias Gástricas/genética , Succinato Desidrogenase/genética , Adolescente , Adulto , Condroma/diagnóstico , Feminino , Heterozigoto , Humanos , Leiomiossarcoma/diagnóstico , Neoplasias Pulmonares/diagnóstico , Masculino , Paraganglioma Extrassuprarrenal/diagnóstico , Linhagem , Neoplasias Gástricas/diagnóstico
8.
Endocr Relat Cancer ; 23(1): 15-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26438728

RESUMO

Primary pigmented nodular adrenocortical disease (PPNAD), whether in the context of Carney complex (CNC) or isolated, leads to ACTH-independent Cushing's syndrome (CS). CNC and PPNAD are caused typically by inactivating mutations of PRKAR1A, a gene coding for the type 1a regulatory subunit (R1α) of cAMP-dependent protein kinase (PKA). Mice lacking Prkar1a, specifically in the adrenal cortex (AdKO) developed CS caused by bilateral adrenal hyperplasia (BAH), which is formed from the abnormal proliferation of fetal-like adrenocortical cells. Celecoxib is a cyclooxygenase 2 (COX2) inhibitor. In bone, Prkar1a inhibition is associated with COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of bone stromal cells. We hypothesized that COX2 inhibition may have an effect in PPNAD. In vitro treatment of human cell lines, including one from a patient with PPNAD, with celecoxib resulted in decreased cell viability. We then treated AdKO and control mice with 1500 mg/kg celecoxib or vehicle. Celecoxib treatment led to decreased PGE2 and corticosterone levels, reduced proliferation and increased apoptosis of adrenocortical cells, and decreased steroidogenic gene expression. We conclude that, in vitro and in vivo, celecoxib led to decreased steroidogenesis. In a mouse model of PPNAD, celecoxib caused histological changes that, at least in part, reversed BAH and this was associated with a reduction of corticosterone levels.


Assuntos
Córtex Suprarrenal/patologia , Celecoxib/farmacologia , Síndrome de Cushing/patologia , Glucocorticoides/metabolismo , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Animais , Síndrome de Cushing/etiologia , Síndrome de Cushing/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Hiperplasia/complicações , Hiperplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Tumorais Cultivadas
9.
Hum Mol Genet ; 24(21): 6080-92, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26246497

RESUMO

Carney Complex (CNC), a human genetic syndrome predisposing to multiple neoplasias, is associated with bone lesions such as osteochondromyxomas (OMX). The most frequent cause for CNC is PRKAR1A deficiency; PRKAR1A codes for type-I regulatory subunit of protein kinase A (PKA). Prkar1a(+/-) mice developed OMX, fibrous dysplasia-like lesions (FDL) and other tumors. Tumor tissues in these animals had increased PKA activity due to an unregulated PKA catalytic subunit and increased PKA type II (PKA-II) activity mediated by the PRKAR2A and PRKAR2B subunits. To better understand the effect of altered PKA activity on bone, we studied Prkar2a and Prkar2b knock out (KO) and heterozygous mice; none of these mice developed bone lesions. When Prkar2a(+/-) and Prkar2b(+/-) mice were used to generate Prkar1a(+/-)Prkar2a(+/-) and Prkar1a(+/-)Prkar2b(+/-) animals, bone lesions formed that looked like those of the Prkar1a(+/-) mice. However, better overall bone organization and mineralization and fewer FDL lesions were found in both double heterozygote groups, indicating a partial restoration of the immature bone structure observed in Prkar1a(+/-) mice. Further investigation indicated increased osteogenesis and higher new bone formation rates in both Prkar1a(+/-)Prkar2a(+/-) and Prkar1a(+/-)Prkar2b(+/-) mice with some minor differences between them. The observations were confirmed with a variety of markers and studies. PKA activity measurements showed the expected PKA-II decrease in both double heterozygote groups. Thus, haploinsufficiency for either of PKA-II regulatory subunits improved bone phenotype of mice haploinsufficient for Prkar1a, in support of the hypothesis that the PRKAR2A and PRKAR2B regulatory subunits were in part responsible for the bone phenotype of Prkar1a(+/-) mice.


Assuntos
Osso e Ossos/patologia , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Haploinsuficiência , Animais , Antígenos de Diferenciação/biossíntese , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Calcificação Fisiológica , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese , Fenótipo , Isoformas de Proteínas/metabolismo , Células Tumorais Cultivadas
10.
Front Cell Dev Biol ; 3: 26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042218

RESUMO

Cyclic-AMP (cAMP)-dependent protein kinase (PKA) is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS) from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH). More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα), were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C) recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA's role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway.

11.
Endocr Relat Cancer ; 22(4): 519-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979379

RESUMO

We hypothesized that mutations that inactivate phosphodiesterase (PDE) activity and lead to increased cAMP and cyclic guanosine monophosphate levels may be associated with prostate cancer (PCa). We sequenced the entire PDE coding sequences in the DNA of 16 biopsy samples from PCa patients. Novel mutations were confirmed in the somatic or germline state by Sanger sequencing. Data were then compared to the 1000 Genome Project. PDE, CREB and pCREB protein expression was also studied in all samples, in both normal and abnormal tissue, by immunofluorescence. We identified three previously described PDE sequence variants that were significantly more frequent in PCa. Four novel sequence variations, one each in the PDE4B,PDE6C, PDE7B and PDE10A genes, respectively, were also found in the PCa samples. Interestingly, PDE10A and PDE4B novel variants that were present in 19 and 6% of the patients were found in the tumor tissue only. In patients carrying PDE defects, there was pCREB accumulation (P<0.001), and an increase of the pCREB:CREB ratio (patients 0.97±0.03; controls 0.52±0.03; P-value <0.001) by immunohistochemical analysis. We conclude that PDE sequence variants may play a role in the predisposition and/or progression to PCa at the germline and/or somatic state respectively.


Assuntos
Diester Fosfórico Hidrolases/genética , Neoplasias da Próstata/genética , Sequência de Bases , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Exoma , Variação Genética , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/metabolismo , Análise de Sequência de DNA , Regulação para Cima
12.
Eur J Endocrinol ; 172(6): 803-11, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-25924874

RESUMO

OBJECTIVE: We have recently reported five patients with bilateral adrenocortical hyperplasia (BAH) and Cushing's syndrome (CS) caused by constitutive activation of the catalytic subunit of protein kinase A (PRKACA). By doing new in-depth analysis of their cytogenetic abnormality, we attempted a better genotype-phenotype correlation of their PRKACA amplification. DESIGN: This study is a case series. METHODS: Molecular cytogenetic, genomic, clinical, and histopathological analyses were performed in five patients with CS. RESULTS: Reinvestigation of the defects of previously described patients by state-of-the-art molecular cytogenetics showed complex genomic rearrangements in the chromosome 19p13.2p13.12 locus, resulting in copy number gains encompassing the entire PRKACA gene; three patients (one sporadic case and two related cases) were observed with gains consistent with duplications, while two sporadic patients were observed with gains consistent with triplications. Although all five patients presented with ACTH-independent CS, the three sporadic patients had micronodular BAH and underwent bilateral adrenalectomy in early childhood, whereas the two related patients, a mother and a son, presented with macronodular BAH as adults. In at least one patient, PRKACA triplication was associated with a more severe phenotype. CONCLUSIONS: Constitutional chromosomal PRKACA gene amplification is a recently identified genetic defect associated with CS, a trait that may be inherited in an autosomal dominant manner or occur de novo. Genomic rearrangements can be complex and can result in different copy number states of dosage-sensitive genes, e.g., duplication and triplication. PRKACA amplification can lead to variable phenotypes clinically and pathologically, both micro- and macro-nodular BAH, the latter of which we speculate may depend on the extent of amplification.


Assuntos
Glândulas Suprarrenais/patologia , Síndrome de Cushing/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Amplificação de Genes/genética , Glândulas Suprarrenais/fisiopatologia , Glândulas Suprarrenais/cirurgia , Adrenalectomia , Adulto , Criança , Pré-Escolar , Síndrome de Cushing/patologia , Síndrome de Cushing/fisiopatologia , Variações do Número de Cópias de DNA , Feminino , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Hiperplasia/fisiopatologia , Masculino , Fenótipo , Adulto Jovem
13.
Endocrine ; 50(1): 27-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25971952

RESUMO

Bilateral adrenocortical hyperplasia (BAH) in humans and mice has been recently linked to phosphodiesterase (PDE) 8B (PDE8B) and 11 (PDE11A) defects. These findings have followed the discovery that defects of primary genes of the cyclic monophosphatase (cAMP) signaling pathway, such as guanine nucleotide binding alpha subunit and PRKAR1A, are involved in the pathogenesis of BAH in humans; complete absence of Prkar1a in the adrenal cortex of mice also led to pathology that mimicked the human disease. Here, we review the most recent findings in human and mouse studies on PDE8B, a cAMP-specific PDE that appears to be highly expressed in the adrenal cortex and whose deficiency may underlie predisposition to BAH and possibly other human diseases.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Córtex Suprarrenal/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/deficiência , Córtex Suprarrenal/patologia , Animais , Humanos , Camundongos
14.
Endocr Relat Cancer ; 22(3): 345-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808178

RESUMO

Carney triad (CTr) describes the association of paragangliomas (PGL), pulmonary chondromas, and gastrointestinal (GI) stromal tumors (GISTs) with a variety of other lesions, including pheochromocytomas and adrenocortical tumors. The gene(s) that cause CTr remain(s) unknown. PGL and GISTs may be caused by loss-of-function mutations in succinate dehydrogenase (SDH) (a condition known as Carney-Stratakis syndrome (CSS)). Mitochondrial structure and function are abnormal in tissues that carry SDH defects, but they have not been studied in CTr. For the present study, we examined mitochondrial structure in human tumors and GI tissue (GIT) of mice with SDH deficiency. Tissues from 16 CTr tumors (n=12), those with isolated GIST (n=1), and those with CSS caused by SDHC (n=1) and SDHD (n=2) mutations were studied by electron microscopy (EM). Samples of GIT from mice with a heterozygous deletion in Sdhb (Sdhb(+) (/-), n=4) were also studied by EM. CTr patients presented with mostly epithelioid GISTs that were characterized by plump cells containing a centrally located, round nucleus and prominent nucleoli; these changes were almost identical to those seen in the GISTs of patients with SDH. In tumor cells from patients, regardless of diagnosis or tumor type, cytoplasm contained an increased number of mitochondria with a 'hypoxic' phenotype: mitochondria were devoid of cristae, exhibited structural abnormalities, and were of variable size. Occasionally, mitochondria were small and round; rarely, they were thin and elongated with tubular cristae. Many mitochondria exhibited amorphous fluffy material with membranous whorls or cystic structures. A similar mitochondrial hypoxic phenotype was seen in Sdhb(+) (/-) mice. We concluded that tissues from SDH-deficient tumors, those from mouse GIT, and those from CTr tumors shared identical abnormalities in mitochondrial structure and other features. Thus, the still-elusive CTr defect(s) is(are) likely to affect mitochondrial function, just like germline SDH-deficiency does.


Assuntos
Condroma/patologia , Leiomiossarcoma/patologia , Neoplasias Pulmonares/patologia , Mitocôndrias/patologia , Paraganglioma Extrassuprarrenal/patologia , Neoplasias Gástricas/patologia , Succinato Desidrogenase/metabolismo , Adolescente , Adulto , Animais , Criança , Condroma/genética , Condroma/metabolismo , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Humanos , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Paraganglioma Extrassuprarrenal/genética , Paraganglioma Extrassuprarrenal/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Succinato Desidrogenase/deficiência , Succinato Desidrogenase/genética , Adulto Jovem
15.
J Clin Endocrinol Metab ; 100(5): E710-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25695889

RESUMO

CONTEXT: Germline mutations in genes coding succinate dehydrogenase (SDH) subunits A, B, C, and D have been identified in familial paragangliomas (PGLs)/pheochromocytomas (PHEOs) and other tumors. We described a GH-secreting pituitary adenoma (PA) caused by SDHD mutation in a patient with familial PGLs. Additional patients with PAs and SDHx defects have since been reported. DESIGN: We studied 168 patients with unselected sporadic PA and with the association of PAs, PGLs, and/or pheochromocytomas, a condition we named the 3P association (3PAs) for SDHx germline mutations. We also studied the pituitary gland and hormonal profile of Sdhb(+/-) mice and their wild-type littermates at different ages. RESULTS: No SDHx mutations were detected among sporadic PA, whereas three of four familial cases were positive for a mutation (75%). Most of the SDHx-deficient PAs were either prolactinomas or somatotropinomas. Pituitaries of Sdhb(+/-) mice older than 12 months had an increased number mainly of prolactin-secreting cells and several ultrastructural abnormalities such as intranuclear inclusions, altered chromatin nuclear pattern, and abnormal mitochondria. Igf-1 levels of mutant mice tended to be higher across age groups, whereas Prl and Gh levels varied according to age and sex. CONCLUSION: The present study confirms the existence of a new association that we termed 3PAs. It is due mostly to germline SDHx defects, although sporadic cases of 3PAs without SDHx defects also exist. Using Sdhb(+/-) mice, we provide evidence that pituitary hyperplasia in SDHx-deficient cells may be the initial abnormality in the cascade of events leading to PA formation.


Assuntos
Adenoma/genética , Neoplasias das Glândulas Suprarrenais/genética , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias Hipofisárias/genética , Succinato Desidrogenase/genética , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
16.
Endocr Relat Cancer ; 22(1): 47-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527509

RESUMO

IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study, we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in the sections of GH-producing adenomas, familial somatomammotroph hyperplasia, and in normal pituitary. We identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function, in two male patients and one female with somatomammotroph hyperplasia from the same family. Of 60 female controls, two carried the same variant and seven were heterozygous for other variants. Immunohistochemistry showed increased IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared with a GH-producing adenoma from a patient negative for any IGSF1 variants and with normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation.


Assuntos
Hormônio do Crescimento Humano/biossíntese , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Acromegalia/genética , Animais , Estudos de Casos e Controles , Linhagem Celular , Feminino , Mutação em Linhagem Germinativa , Gigantismo/genética , Células HEK293 , Humanos , Imunoglobulinas/química , Masculino , Proteínas de Membrana/química , Modelos Moleculares , Ratos , Transfecção
17.
N Engl J Med ; 371(25): 2363-74, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25470569

RESUMO

BACKGROUND: Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. METHODS: We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. RESULTS: We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells. CONCLUSIONS: We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.).


Assuntos
Acromegalia/genética , Duplicação Cromossômica , Cromossomos Humanos X , Gigantismo/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Feminino , Hormônio do Crescimento Humano/metabolismo , Humanos , Lactente , Masculino , Fenótipo , Conformação Proteica , Receptores Acoplados a Proteínas G/química
18.
Endocrinology ; 155(9): 3397-408, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24914943

RESUMO

The cAMP-dependent protein kinase A (PKA) signaling system is widely expressed and has a central role in regulating cellular metabolism in all organ systems affected by obesity. PKA has four regulatory (RIα, RIIα, RIß, RIIß) and four catalytic (Cα, Cß, Cγ, Prkx) subunit isoforms that have tissue-specific expression profiles. In mice, knockout (KO) of RIIß, the primary PKA regulatory subunit in adipose tissue or knockout of the catalytic subunit Cß resulted in a lean phenotype that resists diet-induced obesity and associated metabolic complications. Here we report that the disruption of the ubiquitously expressed PKA RIIα subunit in mice (RIIαKO) confers resistance to diet-induced obesity, glucose intolerance, and hepatic steatosis. After 2-week high-fat diet exposure, RIIαKO mice weighed less than wild-type littermates. Over time this effect was more pronounced in female mice that were also leaner than their wild-type counterparts, regardless of the diet. Decreased intake of a high-fat diet contributed to the attenuated weight gain in RIIαKO mice. Additionally, RIIα deficiency caused differential regulation of PKA in key metabolic organs: cAMP-stimulated PKA activity was decreased in liver and increased in gonadal adipose tissue. We conclude that RIIα represents a potential target for therapeutic interventions in obesity, glucose intolerance, and nonalcoholic fatty liver disease.


Assuntos
Tecido Adiposo/enzimologia , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/deficiência , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/prevenção & controle , Intolerância à Glucose/prevenção & controle , Fígado/enzimologia , Obesidade/prevenção & controle , Tecido Adiposo/metabolismo , Animais , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Feminino , Intolerância à Glucose/enzimologia , Intolerância à Glucose/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Obesidade/enzimologia , Obesidade/genética
19.
J Clin Endocrinol Metab ; 99(6): E1113-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24601692

RESUMO

CONTEXT: Inactivating germline mutations of the probable tumor suppressor gene, armadillo repeat containing 5 (ARMC5), have recently been identified as a genetic cause of macronodular adrenal hyperplasia (MAH). OBJECTIVE: We searched for ARMC5 mutations in a large cohort of patients with MAH. The clinical phenotype of patients with and without ARMC5 mutations was compared. METHODS: Blood DNA from 34 MAH patients was genotyped using Sanger sequencing. Diurnal serum cortisol measurements, plasma ACTH levels, urinary steroids, 6-day Liddle's test, adrenal computed tomography, and weight of adrenal glands at adrenalectomy were assessed. RESULTS: Germline ARMC5 mutations were found in 15 of 34 patients (44.1%). In silico analysis of the mutations indicated that seven (20.6%) predicted major implications for gene function. Late-night cortisol levels were higher in patients with ARMC5-damaging mutations compared with those without and/or with nonpathogenic mutations (14.5 ± 5.6 vs 6.7 ± 4.3, P < .001). All patients carrying a pathogenic ARMC5 mutation had clinical Cushing's syndrome (seven of seven, 100%) compared with 14 of 27 (52%) of those without or with mutations that were predicted to be benign (P = .029). Repeated-measures analysis showed overall higher urinary 17-hydroxycorticosteroids and free cortisol values in the patients with ARMC5-damaging mutations during the 6-day Liddle's test (P = .0002). CONCLUSIONS: ARMC5 mutations are implicated in clinically severe Cushing's syndrome associated with MAH. Knowledge of a patient's ARMC5 status has important clinical implications for the diagnosis of Cushing's syndrome and genetic counseling of patients and their families.


Assuntos
Proteínas do Domínio Armadillo/genética , Síndrome de Cushing/genética , Proteínas Supressoras de Tumor/genética , Adulto , Estudos de Coortes , Síndrome de Cushing/diagnóstico , Síndrome de Cushing/epidemiologia , Análise Mutacional de DNA , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto
20.
N Engl J Med ; 370(11): 1019-28, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24571724

RESUMO

BACKGROUND: Corticotropin-independent Cushing's syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood. METHODS: We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro. RESULTS: Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushing's syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased. CONCLUSIONS: Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).


Assuntos
Adenoma/genética , Neoplasias das Glândulas Suprarrenais/genética , Hiperplasia Suprarrenal Congênita/genética , Síndrome de Cushing/etiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Mutação em Linhagem Germinativa , Adenoma/complicações , Adenoma/enzimologia , Neoplasias das Glândulas Suprarrenais/complicações , Neoplasias das Glândulas Suprarrenais/enzimologia , Adulto , Domínio Catalítico , Síndrome de Cushing/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Exoma , Humanos , Hidrocortisona/biossíntese , Pessoa de Meia-Idade , Mutação , Conformação Proteica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...