Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-12769642

RESUMO

Striated (skeletal and cardiac) muscle is activated by the binding of Ca(2+) to troponin C and is regulated by the thin filament proteins, tropomyosin and troponin. Unlike in molluscan or smooth muscles, the myosin regulatory light chains (RLC) of striated muscles do not play a major regulatory role and their function is still not well understood. The N-terminal domain of RLC contains a 'Ca(2+)-Mg(2+)'-binding site and, analogous to that of smooth muscle myosin, also contains a phosphorylation site. During muscle contraction, the increase in Ca(2+) concentration activates the Ca(2+)/calmodulin-dependent myosin light chain kinase and leads to phosphorylation of the RLC. In agreement with other laboratories we have demonstrated that phosphorylation and Ca(2+) binding to the RLC play an important modulatory role in striated muscle contraction. Furthermore, the ventricular isoform of human cardiac RLC has been shown to be one of the sarcomeric proteins associated with familial hypertrophic cardiomyopathy (FHC), an autosomal dominant disease characterized by left ventricular hypertrophy, myofibrillar disarray and sudden cardiac death. Our recent studies have demonstrated that phosphorylation and Ca(2+) binding to human ventricular RLC are significantly altered by the FHC mutations and that their detrimental effects depend upon the specific position of the missense mutation, whether located in the proximity of the RLC 'Ca(2+)-Mg(2+)'-binding site or the phosphorylation site (Serine 15). We have also shown that there is a functional coupling between Ca(2+) and/or Mg(2+) binding to the RLC and phosphorylation and that the FHC mutations can affect this relationship. Further in vivo studies are necessary to investigate the mechanisms involved in the pathogenesis of RLC-linked FHC.


Assuntos
Cadeias Leves de Miosina/fisiologia , Sequência de Aminoácidos , Animais , Cardiomiopatias/patologia , Humanos , Isomerismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Miocárdio/metabolismo , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/ultraestrutura , Fosforilação
2.
J Appl Physiol (1985) ; 92(4): 1661-70, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11896035

RESUMO

The role of phosphorylation of the myosin regulatory light chains (RLC) is well established in smooth muscle contraction, but in striated (skeletal and cardiac) muscle its role is still controversial. We have studied the effects of RLC phosphorylation in reconstituted myosin and in skinned skeletal muscle fibers where Ca2+ sensitivity and the kinetics of steady-state force development were measured. Skeletal muscle myosin reconstituted with phosphorylated RLC produced a much higher Ca2+ sensitivity of thin filament-regulated ATPase activity than nonphosphorylated RLC (change in -log of the Ca2+ concentration producing half-maximal activation = approximately 0.25). The same was true for the Ca2+ sensitivity of force in skinned skeletal muscle fibers, which increased on reconstitution of the fibers with the phosphorylated RLC. In addition, we have shown that the level of endogenous RLC phosphorylation is a crucial determinant of the Ca2+ sensitivity of force development. Studies of the effects of RLC phosphorylation on the kinetics of force activation with the caged Ca2+, DM-nitrophen, showed a slight increase in the rates of force development with low statistical significance. However, an increase from 69 to 84% of the initial steady-state force was observed when nonphosphorylated RLC-reconstituted fibers were subsequently phosphorylated with exogenous myosin light chain kinase. In conclusion, our results suggest that, although Ca2+ binding to the troponin-tropomyosin complex is the primary regulator of skeletal muscle contraction, RLC play an important modulatory role in this process.


Assuntos
Cálcio/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Cadeias Leves de Miosina/metabolismo , Actinas/metabolismo , Animais , Técnicas In Vitro , Cinética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Miosinas/metabolismo , Fosforilação , Coelhos , Tropomiosina/metabolismo , Troponina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...