Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(5): e202300553, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227379

RESUMO

A simple, green, and relatively fast procedure was used to prepare palladium decorated graphene-based materials. A parent graphene-like material with a high specific surface area of up to 384 m2 /g and a total pore volume of 0.42 cm3 /g was prepared via a fast, solvent-free ball milling of graphite powder only. Post-synthetic modification of this graphene-like material was performed via a simplified method using palladium chloride and a small amount of a non-harsh reducing agent - formic acid. Palladium decoration (2.1 wt%) allowed obtaining a few times higher hydrogen adsorption (0.42 wt% at 30 °C and 40 bar) compared to that on bare graphene-based materials. Palladium-decorated graphene materials are promising for hydrogen storage and their usage in this application represents an alternative for conventional fossil fuels. The proposed synthesis and post-modification strategies are in line with green synthesis strategies.

2.
Molecules ; 28(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37764327

RESUMO

A facile mechanochemical method was used for the synthesis of ordered mesoporous carbons (OMCs) with well-dispersed metal nanoparticles. The one-pot ball milling of tannins with a metal salt in the presence of a block copolymer followed by thermal treatment led to Ni- or Pt-embedded OMCs with high specific surface areas (up to 600 m2·g-1) and large pore volumes (up to ~0.5 cm3·g-1). The as-prepared OMC-based samples exhibited hexagonally ordered cylindrical mesopores with narrow pore size distributions (average pore size ~7 nm), which implies sufficient long-range copolymer-assisted self-assembly of the tannin-derived polymer upon milling even in the presence of a metal salt. The homogenous decoration of carbons with small-sized metal (Ni or Pt) particles was essential to provide H2 storage capacities up to 0.33 wt.% at 25 °C and under 100 bar. The presented synthesis strategy seems to have great potential in the practical uses of functionalized polymers and carbons for applications in adsorption and catalysis.

3.
Nanotechnology ; 34(50)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37725962

RESUMO

Three spherical activated carbons (SACs) were used as substrates for mammalian cell proliferation. SACs were obtained by carbonizing styrene-co-divinylbenzene ion exchangers 35WET, XAD4, or 1200H. The new materials (XAD_C, WET_C, and H_C) were characterized by adsorption-desorption nitrogen isotherms and mercury intrusion porosimetry. XAD_C and WET_C exhibited well-developed BET surface areas, similar total pore volumes, and highly different pore size distributions. H_C was nonporous spherical material-reference material. The XAD_C was meso-macroporous, but the WET_C was micro-mesoporous. All SACs were not cytotoxic toward Leydig TM3 cells. The differences in porous structure and morphology of the carbon scaffolds led to morphological differences in adhered cells. The monolayer of cells was distributed flat over the entire WET_C and H_C surfaces. Leydig TM3 cells adhered to nonporous SAC but were easily washed out due to weak adhesion. The cells adhered in clusters to XAD_C and proliferated in clusters. As microscopic techniques and viability tests demonstrated, only nanoporous carbons provided a good surface for the attachment and proliferation of eukaryotic cells.

4.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985612

RESUMO

Ultrasounds are commonly used in medical imaging, solution homogenization, navigation, and ranging, but they are also a great energy source for chemical reactions. Sonochemistry uses ultrasounds and thus realizes one of the basic concepts of green chemistry, i.e., energy savings. Moreover, reduced reaction time, mostly using water as a solvent, and better product yields are among the many factors that make ultrasound-induced reactions greener than those performed under conventional conditions. Sonochemistry has been successfully implemented for the preparation of various materials; this review covers sonochemically synthesized nanoporous materials. For instance, sonochemical-assisted methods afforded ordered mesoporous silicas, spherical mesoporous silicas, periodic mesoporous organosilicas, various metal oxides, biomass-derived activated carbons, carbon nanotubes, diverse metal-organic frameworks, and covalent organic frameworks. Among these materials, highly porous samples have also been prepared, such as garlic peel-derived activated carbon with an apparent specific surface area of 3887 m2/g and MOF-177 with an SSA of 4898 m2/g. Additionally, many of them have been examined for practical usage in gas adsorption, water treatment, catalysis, and energy storage-related applications, yielding satisfactory results.

5.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160895

RESUMO

The article presents a discussion on the use of hexagonal boron nitride as an additive to lubricants. Based on the analysis of the research, factors determining its application were identified. These include particle size distribution, their morphology, specific surface area, and porosity. Next, the research identifying these properties for the four types of h-BN was described. Based on the results, the possible mechanisms of the influence of individual h-BN types were described. It was also found that the use of h-BN nanoparticles as lubricants seems to be promising.

6.
Adv Mater ; 33(48): e2103477, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34580939

RESUMO

Usually, porous materials are synthesized by using conventional electric heating, which can be energy- and time-consuming. Microwave heating is commonly used in many households to quickly heat food. Microwave ovens can also be used as powerful devices in the synthesis of various porous materials. The microwave-assisted synthesis offers a simple, fast, efficient, and economic way to obtain many of the advanced nanomaterials. This review summarizes the recent achievements in the microwave-assisted synthesis of diverse groups of nanoporous materials including silicas, carbons, metal-organic frameworks, and metal oxides. Microwave-assisted methods afford highly porous materials with high specific surface areas (SSAs), e.g., activated carbons with SSA ≈3100 m2 g-1 , metal-organic frameworks with SSA ≈4200 m2 g-1 , covalent organic frameworks with SSA ≈2900 m2 g-1 , and metal oxides with relatively small SSA ≈300 m2 g-1 . These methods are also successfully implemented for the preparation of ordered mesoporous silicas and carbons as well as spherically shaped nanomaterials. Most of the nanoporous materials obtained under microwave irradiation show potential applications in gas adsorption, water treatment, catalysis, energy storage, and drug delivery, among others.

7.
Molecules ; 26(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804995

RESUMO

Highly porous activated carbons were synthesized via the mechanochemical salt-templating method using both sustainable precursors and sustainable chemical activators. Tannic acid is a polyphenolic compound derived from biomass, which, together with urea, can serve as a low-cost, environmentally friendly precursor for the preparation of efficient N-doped carbons. The use of various organic and inorganic salts as activating agents afforded carbons with diverse structural and physicochemical characteristics, e.g., their specific surface areas ranged from 1190 m2·g-1 to 3060 m2·g-1. Coupling the salt-templating method and chemical activation with potassium oxalate appeared to be an efficient strategy for the synthesis of a highly porous carbon with a specific surface area of 3060 m2·g-1, a large total pore volume of 3.07 cm3·g-1 and high H2 and CO2 adsorption capacities of 13.2 mmol·g-1 at -196 °C and 4.7 mmol·g-1 at 0 °C, respectively. The most microporous carbon from the series exhibited a CO2 uptake capacity as high as 6.4 mmol·g-1 at 1 bar and 0 °C. Moreover, these samples showed exceptionally high thermal stability. Such activated carbons obtained from readily available sustainable precursors and activators are attractive for several applications in adsorption and catalysis.

8.
Chem Commun (Camb) ; 56(57): 7836-7848, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32520012

RESUMO

In this feature article we focus on the main developments in the area of ordered mesoporous materials (OMMs) since their discovery in 1992, which is considered one of the milestones in the history of porous materials. Nowadays, there are almost unlimited opportunities in the synthesis of composite- or modified OMMs by using soft- and hard-templating strategies and related methods. Nevertheless, there is still a great challenge to obtain diverse OMMs with well-developed porosity and desired morphology, crystallinity and surface properties. The evolution of the leading OMM members: silicas, organosilicas, metal oxides, carbons, metal-organic frameworks and zeolites, including the main factors affecting their development, is briefly summarized with special emphasis on the authors' accomplishments in this area. Additionally, recent advancements, challenges and prospects in the field of OMMs are presented.

9.
J Colloid Interface Sci ; 577: 163-172, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32474187

RESUMO

Graphene oxide-containing ordered mesoporous carbon (OMC/GO) composites were synthesized by mechanochemical soft-templating of mimosa tannin and graphene oxide with triblock copolymer Pluronic F127. Graphene oxide was added to modify the surface properties of ordered mesoporous carbon. Next, copper containing MOF (CuBTC) was synthesized in the presence of the OMC/GO composite via dry milling to obtain a three-component composites with different compositions. The composite with 50 wt% of CuBTC exhibited high CO2 uptake capacity of 5.39 mmol·g-1 at 0 °C and 1 bar. This study showed that CuBTC was initially crystallized in mesopores of carbonaceous materials, and next on their external surface. Small OMC amounts (~1 and ~3 wt%) added during the mechanochemical synthesis of CuBTC resulted in the enhanced surface area of the obtained two-component composites reaching 1930 m2·g-1 as compared to those of parent materials. This paper reports a comprehensive study of carbon-CuBTC composites over a wide range of compositions, which may be interesting from the viewpoint of advancing and understanding the mechanochemical synthesis of composite materials with high surface areas, enhanced porosity and interfacial properties.

10.
J Colloid Interface Sci ; 514: 801-813, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187296

RESUMO

Nowadays, hybrid porous materials consisting of metal-organic frameworks (MOFs) and graphene nanosheets become more and more attractive because of their growing applications in adsorption, catalysis and related areas. Incorporation of graphene oxide into MOFs can provide benefits such as increased water resistance and thermal stability as well as enhanced surface area and adsorption properties. Graphene oxide is one of the best additives to other materials owing to its two main virtues: high atomic density and large amount of surface functional groups. Due to its dense array of atoms, graphene oxide can significantly increase dispersion forces in graphene-MOF materials, which is beneficial for adsorption of small molecules. This work presents a concise appraisal of adsorption properties of MOFs and graphene-MOF hybrids toward CO2, volatile organic compounds, hydrogen and methane. It shows that the graphene-MOF materials represent an important class of materials with potential applications in adsorption and catalysis. A special emphasis of this article is placed on their adsorption applications for gas capture and storage. A large number of graphene-MOF adsorbents has been so far explored and their appraisal could be beneficial for researchers interested in the development of hybrid adsorbents for adsorption-based applications.

11.
Adv Colloid Interface Sci ; 243: 46-59, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28347414

RESUMO

Clean energy sources and global warming are among the major challenges of the 21st century. One of the possible actions toward finding alternative energy sources and reducing global warming are storage of H2 and CH4, and capture of CO2 by using highly efficient and low-cost adsorbents. Graphene and graphene-based materials attracted a great attention around the world because of their potential for a variety applications ranging from electronics, gas sensing, energy storage and CO2 capture. Large specific surface area of these materials up to ~3000m2/g and versatile modification make them excellent adsorbents for diverse applications. Here, graphene-based adsorbents are reviewed with special emphasis on their adsorption affinity toward CO2, H2 and CH4. This review shows that graphene derivatives obtained mainly via "chemical exfoliation" of graphite and further modification with polymers and/or metal species can be very effective sorbents for CO2 and other gases and can compete with the currently used carbonaceous or non-carbonaceous adsorbents. The high adsorption capacities of graphene-based materials are mainly determined by their unique nanostructures, high specific surface areas and tailorable surface properties, which make them suitable for storage or capture of various molecules relevant for environmental and energy-related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...