Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798635

RESUMO

The propensities to form lowly-populated short-lived conformations of DNA could vary with sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging. Using 1H CEST and 13C R1ρ NMR, we measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in thirteen trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. The Hoogsteen dynamics had a distinct sequence-dependence compared to duplex stability and minor groove width. Thus, our results uncover a unique source of sequence-specificity hidden within the DNA double helix in the form of A-T Hoogsteen dynamics and establish the utility of 1H CEST to quantitively measure sequence-dependent DNA dynamics.

2.
Nucleic Acids Res ; 52(5): 2672-2685, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38281263

RESUMO

Many biochemical processes use the Watson-Crick geometry to distinguish correct from incorrect base pairing. However, on rare occasions, mismatches such as G·T/U can transiently adopt Watson-Crick-like conformations through tautomerization or ionization of the bases, giving rise to replicative and translational errors. The propensities to form Watson-Crick-like mismatches in RNA:DNA hybrids remain unknown, making it unclear whether they can also contribute to errors during processes such as transcription and CRISPR/Cas editing. Here, using NMR R1ρ experiments, we show that dG·rU and dT·rG mismatches in two RNA:DNA hybrids transiently form tautomeric (Genol·T/U $ \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}}$ G·Tenol/Uenol) and anionic (G·T-/U-) Watson-Crick-like conformations. The tautomerization dynamics were like those measured in A-RNA and B-DNA duplexes. However, anionic dG·rU- formed with a ten-fold higher propensity relative to dT-·rG and dG·dT- and this could be attributed to the lower pKa (ΔpKa ∼0.4-0.9) of U versus T. Our findings suggest plausible roles for Watson-Crick-like G·T/U mismatches in transcriptional errors and CRISPR/Cas9 off-target gene editing, uncover a crucial difference between the chemical dynamics of G·U versus G·T, and indicate that anionic Watson-Crick-like G·U- could play a significant role evading Watson-Crick fidelity checkpoints in RNA:DNA hybrids and RNA duplexes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Hibridização de Ácido Nucleico , Pareamento de Bases , DNA/genética , DNA/química , Conformação de Ácido Nucleico , RNA/química
3.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662220

RESUMO

Many biochemical processes use the Watson-Crick geometry to distinguish correct from incorrect base pairing. However, on rare occasions, mismatches such as G•T/U can transiently adopt Watson-Crick-like conformations through tautomerization or ionization of the bases, giving rise to replicative and translational errors. The propensities to form Watson-Crick-like mismatches in RNA:DNA hybrids remain unknown, making it unclear whether they can also contribute to errors during processes such as transcription and CRISPR/Cas editing. Here, using NMR R 1ρ experiments, we show that dG•rU and dT•rG mismatches in two RNA:DNA hybrids transiently form tautomeric (G enol •T/U ⇄G•T enol /U enol ) and anionic (G•T - /U - ) Watson-Crick-like conformations. The tautomerization dynamics were like those measured in A-RNA and B-DNA duplexes. However, anionic dG•rU - formed with a ten-fold higher propensity relative to dT - •rG and dG•dT - and this could be attributed to the lower pK a (Δ pK a ∼0.4-0.9) of U versus T. Our findings suggest plausible roles for Watson-Crick-like G•T/U mismatches in transcriptional errors and CRISPR/Cas9 off-target gene editing, uncover a crucial difference between the chemical dynamics of G•U versus G•T, and indicate that anionic Watson-Crick-like G•U - could play a significant role evading Watson-Crick fidelity checkpoints in RNA:DNA hybrids and RNA duplexes.

4.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33408180

RESUMO

It was shown previously that the Matrix (M), Phosphoprotein (P), and the Fusion (F) proteins of Respiratory syncytial virus (RSV) are sufficient to produce virus-like particles (VLPs) that resemble the RSV infection-induced virions. However, the exact mechanism and interactions among the three proteins are not known. This work examines the interaction between P and M during RSV assembly and budding. We show that M interacts with P in the absence of other viral proteins in cells using a Split Nano Luciferase assay. By using recombinant proteins, we demonstrate a direct interaction between M and P. By using Nuclear Magnetic Resonance (NMR) we identify three novel M interaction sites on P, namely site I in the αN2 region, site II in the 115-125 region, and the oligomerization domain (OD). We show that the OD, and likely the tetrameric structural organization of P, is required for virus-like filament formation and VLP release. Although sites I and II are not required for VLP formation, they appear to modulate P levels in RSV VLPs.Importance Human RSV is the commonest cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. The lack of knowledge of RSV budding mechanism presents a continuing challenge for VLP production for vaccine purpose. We show that direct interaction between P and M modulates RSV VLP budding. This further emphasizes P as a central regulator of RSV life cycle, as an essential actor for transcription and replication early during infection and as a mediator for assembly and budding in the later stages for virus production.

5.
J Am Chem Soc ; 142(20): 9267-9284, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32338002

RESUMO

Hyperpolarized water can be a valuable aid in protein NMR, leading to amide group 1H polarizations that are orders of magnitude larger than their thermal counterparts. Suitable procedures can exploit this to deliver 2D 1H-15N correlations with good resolution and enhanced sensitivity. These enhancements depend on the exchange rates between the amides and the water, thereby yielding diagnostic information about solvent accessibility. This study applied this "HyperW" method to four proteins exhibiting a gamut of exchange behaviors: PhoA(350-471), an unfolded 122-residue fragment; barstar, a fully folded ribonuclease inhibitor; R17, a 13.3 kDa system possessing folded and unfolded forms under slow interconversion; and drkN SH3, a protein domain whose folded and unfolded forms interchange rapidly and with temperature-dependent population ratios. For PhoA4(350-471) HyperW sensitivity enhancements were ≥300×, as expected for an unfolded protein sequence. Though fully folded, barstar also exhibited substantial enhancements; these, however, were not uniform and, according to CLEANEX experiments, reflected the solvent-exposed residues. R17 showed the expected superposition of ≥100-fold enhancements for its unfolded form, coexisting with more modest enhancements for their folded counterparts. Unexpected, however, was the behavior of drkN SH3, for which HyperW enhanced the unfolded but, surprisingly, enhanced even more certain folded protein sites. These preferential enhancements were repeatedly and reproducibly observed. A number of explanations-including three-site exchange magnetization transfers between water and the unfolded and folded states; cross-correlated relaxation processes from hyperpolarized "structural" waters and labile side-chain protons; and the possibility that faster solvent exchange rates characterize certain folded sites over their unfolded counterparts-are considered to account for them.


Assuntos
Fosfatase Alcalina/química , Proteínas de Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Desdobramento de Proteína , Água/química
6.
J Biomol NMR ; 74(2-3): 161-171, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32040802

RESUMO

Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and 1H-15N 2D correlation experiments. Here we introduce 2D 13C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular , Osteopontina/química , Ubiquitina/química , Água/química , Humanos
7.
Langmuir ; 35(30): 9694-9703, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31283884

RESUMO

When aqueous salt solutions contain multivalent ions (like Ca2+ or Mg2+), strong correlation effects may lead to ion-bridging, net attraction, and tight-coupling between like-charged interfaces. To examine the effects of surface charge density, temperature, salt type, and salt concentration on the structures of tightly coupled charged interfaces, we have used mixed lipid membranes, containing either saturated or unsaturated tails in the presence of multivalent ions. We discovered that tightly coupled membrane lamellar phases, dominated by attractive interactions, coexisted with weakly coupled lamellar phases, dominated by repulsive interactions. To control the membrane charge density, we mixed lipids with negatively charged headgroups, DLPS and DOPS, with their zwitterionic analogue having the same tails, DLPC and DOPC, respectively. Using solution X-ray scattering we measured the lamellar repeat distance, D, at different ion concentrations, temperatures, and membrane charge densities. The multivalent ions tightly coupled the mixed lipid bilayers whose charged lipid molar fraction was between 0.1 and 1. The repeat distance of the tightly coupled phase was about 4 nm for the DLPS/DLPC mixtures and about 5 nm for the DOPS/DOPC mixtures. In this phase, the repeat distance slightly increased with increasing temperature and decreased with increasing charge density. When the molar fraction of charged lipid was 0.1 or 0.25, a less tightly coupled phase coexisted with the tightly coupled phase. The weakly coupled lamellar phase had significantly larger D values, although they were consistently shorter than the D values in monovalent salt solutions with similar screening lengths.


Assuntos
Cátions Bivalentes/química , Membrana Celular/química , Fosfolipídeos/química , Água/química
8.
Biochemistry ; 57(32): 4776-4787, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29979586

RESUMO

Many mutations that cause familial hypercholesterolemia localize to ligand-binding domain 5 (LA5) of the low-density lipoprotein receptor, motivating investigation of the folding and misfolding of this small, disulfide-rich, calcium-binding domain. LA5 folding is known to involve non-native disulfide isomers, yet these folding intermediates have not been structurally characterized. To provide insight into these intermediates, we used nuclear magnetic resonance (NMR) to follow LA5 folding in real time. We demonstrate that misfolded or partially folded disulfide intermediates are indistinguishable from the unfolded state when focusing on the backbone NMR signals, which provide information on the formation of only the final, native state. However, 13C labeling of cysteine side chains differentiated transient intermediates from the unfolded and native states and reported on disulfide bond formation in real time. The cysteine pairings in a dominant intermediate were identified using 13C-edited three-dimensional NMR, and coarse-grained molecular dynamics simulations were used to investigate the preference of this disulfide set over other non-native arrangements. The transient population of LA5 species with particular non-native cysteine connectitivies during folding supports the conclusion that cysteine pairing is not random and that there is a bias toward certain structural ensembles during the folding process, even prior to the binding of calcium.


Assuntos
Receptores de LDL/química , Receptores de LDL/metabolismo , Dissulfetos/química , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ligação Proteica , Dobramento de Proteína
9.
Anal Chem ; 90(10): 6169-6177, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29528228

RESUMO

This study demonstrates the usefulness derived from relying on hyperpolarized water obtained by dissolution DNP, for site-resolved biophysical NMR studies of intrinsically disordered proteins. Thanks to the facile amide-solvent exchange experienced by protons in these proteins, 2D NMR experiments that like HMQC rely on the polarization of the amide protons, can be enhanced using hyperpolarized water by several orders of magnitude over their conventional counterparts. Optimizations of the DNP procedure and of the subsequent injection into the protein sample are necessary to achieve these gains while preserving state-of-the-art resolution; procedures enabling this transfer of the hyperpolarized water and the achievement of foamless hyperpolarized protein solutions are demonstrated. These protocols are employed to collect 2D 15N-1H HMQC NMR spectra of α-synuclein, showing residue-specific enhancements ≥100× over their thermal counterparts. These enhancements, however, vary considerably throughout the residues. The biophysics underlying this residue-specific behavior upon injection of hyperpolarized water is theoretically examined, the information that it carries is compared with results arising from alternative methods, and its overall potential is discussed.

10.
J Magn Reson ; 264: 49-58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26920830

RESUMO

A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5mm NMR tubes. All these ingredients--particularly the ⩾ 3000× (1)H polarization enhancements over 11.7T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Água/química , Amidas/química , Aminoácidos/química , Campos Eletromagnéticos , Humanos , Desdobramento de Proteína , Proteínas/química , Prótons , Reprodutibilidade dos Testes , Solubilidade , Tomografia de Coerência Óptica
11.
J Phys Chem B ; 118(12): 3281-90, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24417324

RESUMO

A main obstacle arising when using ex situ hyperpolarization to increase the sensitivity of biomolecular NMR is the fast relaxation that macromolecular spins undergo upon being transferred from the polarizer to the spectrometer, where their observation takes place. To cope with this limitation, the present study explores the use of hyperpolarized water as a means to enhance the sensitivity of nuclei in biomolecules. Methods to achieve proton polarizations in excess of 5% in water transferred into the NMR spectrometer were devised, as were methods enabling this polarization to last for up to 30 s. Upon dissolving amino acids and polypeptides sited at the spectrometer into such hyperpolarized water, a substantial enhancement of certain biomolecular amide and amine proton resonances was observed. This exchange-driven (1)H enhancement was further passed on to side-chain and to backbone nitrogens, owing to spontaneous one-bond Overhauser processes. (15)N signal enhancements >500 over 11.7 T thermal counterparts could thus be imparted in a kinetic process that enabled multiscan signal averaging. Besides potential bioanalytical uses, this approach opens interesting possibilities in the monitoring of dynamic biomolecular processes, including solvent accessibility and exchange process.


Assuntos
Aminoácidos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Prótons , Água/química , Cinética
12.
Chemphyschem ; 14(13): 3138-45, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23878001

RESUMO

The longitudinal relaxation properties of NMR active nuclei carry useful information about the site-specific chemical environments and about the mobility of molecular fragments. Molecular mobility is in turn a key parameter reporting both on stable properties, such as size, as well as on dynamic ones, such as transient interactions and irreversible aggregation. In order to fully investigate the latter, a fast sampling of the relaxation parameters of transiently formed molecular species may be needed. Nevertheless, the acquisition of longitudinal relaxation data is typically slow, being limited by the requirement that the time for which the nucleus relaxes be varied incrementally until a complete build-up curve is generated. Recently, a number of single-shot-inversion-recovery methods have been developed capable of alleviating this need; still, these may be challenged by either spectral resolution restrictions or when coping with very fast relaxing nuclei. Here, we present a new experiment to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T1s measured using the new technique. The method is applied to the real-time investigation of the reaction between D-xylose and sodium borate, which is in turn elucidated with the aid of ancillary ultrafast and conventional 2D TOCSY measurements.

13.
J Phys Chem B ; 116(11): 3519-24, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22352342

RESUMO

It is well-known that phospholipids in aqueous environment self-assemble into lamellar structures with a repeat distance governed by the interactions between them. Yet, the understanding of these interactions is incomplete. In this paper, we study the effect of temperature on the interlamellar interactions between dipolar membranes. Using solution small-angle X-ray scattering (SAXS), we measured the repeat distance between 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) bilayers at different temperatures and osmotic stresses. We found that when no pressure is applied the lamellar repeat distance, D, decreases and then increases with increasing temperature. As the osmotic stress increases, D decreases with temperature and then increases to a limited extent, until at sufficiently high pressure D decreases with temperature in all the examined range. We then reconstructed experimentally the equation of state and fit it with a modified interaction model that takes into account the temperature dependence of the fluctuation term. Finally, we showed how the thickness of DLPC membranes decreases with temperature.


Assuntos
Bicamadas Lipídicas/química , Temperatura , Dimiristoilfosfatidilcolina/química , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
Langmuir ; 28(5): 2604-13, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22191627

RESUMO

Like-charged solid interfaces repel and separate from one another as much as possible. Charged interfaces composed of self-assembled charged-molecules such as lipids or proteins are ubiquitous. The present study shows that although charged lipid-membranes are sufficiently rigid, in order to swell as much as possible, they deviate markedly from the behavior of typical like-charged solids when diluted below a critical concentration (ca. 15 wt %). Unexpectedly, they swell into lamellar structures with spacing that is up to four times shorter than the layers should assume (if filling the entire available space). This process is reversible with respect to changing the lipid concentration. Additionally, the research shows that, although the repulsion between charged interfaces increases with temperature, like-charged membranes, remarkably, condense with increasing temperature. This effect is also shown to be reversible. Our findings hold for a wide range of conditions including varying membrane charge density, bending rigidity, salt concentration, and conditions of typical living systems. We attribute the limited swelling and condensation of the net repulsive interfaces to their self-assembled character. Unlike solids, membranes can rearrange to gain an effective entropic attraction, which increases with temperature and compensates for the work required for condensing the bilayers. Our findings provide new insight into the thermodynamics and self-organization of like-charged interfaces composed of self-assembled molecules such as charged biomaterials and supramolecular assemblies that are widely found in synthetic and natural constructs.


Assuntos
Entropia , Bicamadas Lipídicas/química , Lipídeos/síntese química , Lipídeos/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Propriedades de Superfície
15.
Langmuir ; 27(24): 14767-75, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22066979

RESUMO

We apply a means to probe, stabilize, and control the size of lipid raft-like domains in vitro. In biomembranes the size of lipid rafts is ca. 10-30 nm. In vitro, mixing saturated and unsaturated lipids results in microdomains, which are unstable and coalesce. This inconsistency is puzzling. It has been hypothesized that biological line-active surfactants reduce the line tension between saturated and unsaturated lipids and stabilize small domains in vivo. Using solution X-ray scattering, we studied the structure of binary and ternary lipid mixtures in the presence of calcium ions. Three lipids were used: saturated, unsaturated, and a hybrid (1-saturated-2-unsaturated) lipid that is predominant in the phospholipids of cellular membranes. Only membranes composed of the saturated lipid can adsorb calcium ions, become charged, and therefore considerably swell. The selective calcium affinity was used to show that binary mixtures, containing the saturated lipid, phase separated into large-scale domains. Our data suggests that by introducing the hybrid lipid to a mixture of the saturated and unsaturated lipids, the size of the domains decreased with the concentration of the hybrid lipid, until the three lipids could completely mix. We attribute this behavior to the tendency of the hybrid lipid to act as a line-active cosurfactant that can easily reside at the interface between the saturated and the unsaturated lipids and reduce the line tension between them. These findings are consistent with a recent theory and provide insight into the self-organization of lipid rafts, their stabilization, and size regulation in biomembranes.


Assuntos
Biomimética/métodos , Cálcio/metabolismo , Físico-Química , Colesterol/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Colesterol/metabolismo , Ácidos Graxos/química , Ácidos Graxos Insaturados/química , Íons/metabolismo , Bicamadas Lipídicas/análise , Fluidez de Membrana , Microdomínios da Membrana/metabolismo , Sondas Moleculares/análise , Fosfolipídeos/análise , Fosfolipídeos/química , Espalhamento a Baixo Ângulo , Raios X
16.
J Phys Chem B ; 115(49): 14501-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21988313

RESUMO

Interactions between charged and neutral self-assembled phospholipid membranes are well understood and take into account temperature dependence. Yet, the manner in which the structure of the membrane is affected by temperature was hardly studied. Here we study the effect of temperature on the thickness, area per lipid, and volume per lipid of charged membranes. Two types of membranes were studied: membranes composed of charged lipids and dipolar (neutral) membranes that adsorbed divalent cations and became charged. Small-angle X-ray scattering data demonstrate that the thickness of charged membranes decreases with temperature. Wide-angle X-ray scattering data show that the area per headgroup increases with temperature. Intrinsically charged membranes linearly thin with temperature, whereas neutral membranes that adsorb divalent ions and become charged show an exponential decrease of their thickness. The data indicate that, on average, the tails shorten as the temperature rises. We attribute this behavior to higher lipid tail entropy and to the weaker electrostatic screening of the charged headgroups, by their counterions, at elevated temperatures. The latter effect leads to stronger electrostatic repulsion between the charged headgroups that increases the area per headgroup and decreases the bilayer thickness.


Assuntos
Bicamadas Lipídicas/química , Temperatura , Entropia , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
17.
Langmuir ; 27(12): 7419-38, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21598965

RESUMO

In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar membranes and charged proteins or biopolymers for encapsulation and delivery applications.


Assuntos
Íons/química , Lipídeos/química , Membranas Artificiais , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...