Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cosmet Sci ; 57(4): 309-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16957810

RESUMO

Microemulsification of triglyceride-based oil is challenging due to the formation of undesirable phases such as macroemulsions, liquid crystals, or sponge phases. This research evaluates the formation of artificial sebum microemulsions using linker molecules, with the addition of co-oil to help enhance sebum solubilization. The microemulsion consists of a lipophilic linker (sorbitan monooleate), a hydrophilic linker (hexylglucocide), a main surfactant (sodium dioctyl sulfosuccinate), a co-oil, and artificial sebum. The effect of adding co-oil to the phase behavior and the microstructure of the resulting microemulsion is described. The effect of several types of co-oil is also studied; the co-oils evaluated here are squalene, squalane, isopropyl myristate, and ethyl laurate. The effect of salinity on the microemulsion phase behavior is also presented. Fish diagrams are obtained by plotting total surfactant/linker concentration as a function of sebum fraction in the oil mixture (co-oil + sebum). Different microemulsion types (Winsor Types I, II, III, and IV) are formed, depending on the total surfactant/linker concentration and the fraction of co-oil in the oil mixture. Winsor Type IV (single-phase) microemulsions are observed at high surfactant/linker concentrations. These single-phase, isotropic, and low-viscous fluids are particularly useful for cleansing and delivery of functional ingredients in skin care products. Salt addition shifts the fish diagram towards more hydrophobic oil systems and higher surfactant/linker concentrations.


Assuntos
Cosméticos/química , Emulsões/química , Sebo/química , Triglicerídeos/química , Lauratos/química , Miristatos/química , Cloreto de Sódio/química , Esqualeno/análogos & derivados , Esqualeno/química , Succinatos/química , Propriedades de Superfície , Tensoativos/química
2.
J Contam Hydrol ; 82(1-2): 1-22, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16233935

RESUMO

This study reports on a surfactant-based flood for tetrachloroethylene (PCE) removal from a control test cell at the Dover National Test Site. The surfactant formulation (sodium dihexyl sulfosuccinate (Aerosol-MA or AMA), isopropanol and calcium chloride) was able to achieve a high concentration of PCE in swollen micelles (supersolubilization) without vertical PCE migration. The hydraulic system included eight screened wells that were operated in both vertical circulation and line drive configurations. After 10 pore volumes of flushing, the overall PCE removal was 68% (65% of which corresponded to the surfactant flooding alone). In addition, the residual PCE saturation was reduced from 0.7% to 0.2%, and the concentration of PCE in the groundwater was reduced from 37-190 mg/L before the flushing to 7.3 mg/L after flooding. Recycling the surfactant solution reduced the required surfactant mass (and thus cost, and waste) by 90%. Close to 80% of the total PCE removal was obtained during the first five pore volumes which were operated in an upward vertical circulation flow scheme. No free oil phase was observed during the test. Further analysis of multilevel sampler data suggests that most of the trapped oil remaining in the cell was likely localized in secluded regions of the aquifer, which helps explain the lower PCE groundwater concentration after remedial activities. In summary, this field study demonstrated the feasibility of surfactant-enhanced remediation to reduce the mass in the source zone and significantly reduce the PCE aqueous concentration and therefore the risk associated with the contaminant plume.


Assuntos
Poluentes do Solo/isolamento & purificação , Tensoativos/química , Tetracloroetileno/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , 2-Propanol/química , Cloreto de Cálcio/química , Micelas , Solubilidade , Succinatos/química , Fatores de Tempo
3.
J Colloid Interface Sci ; 294(1): 222-33, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16081087

RESUMO

Polar/amphiphilic oils, called lipophilic linkers, are sometimes added to oil-water-ionic surfactant microemulsions in order to increase the solubilization of hydrophobic oils. The solubilization increase has been well documented for a number of systems. However, mathematical models to calculate the solubilization increase have been proposed only for optimum microemulsions (i.e., middle phase microemulsions solubilizing equal volumes of oil and water). In this paper we propose a model, which predicts solubilization enhancement for non-optimum microemulsion systems as well. The model is an extension of the net-average curvature model of microemulsion. The net-average curvature model is combined with a surface activity model to account for the increased palisade layer solubilization due to the presence of the polar/amphiphilic oil component. New non-linear mixing rules are also incorporated to account for the optimum salinity and the characteristic length variation of the anionic surfactant microemulsion as a function of the lipophilic linker concentration. The model predicts the effect of the lipophilic linker and the electrolyte concentration on the oil solubilization in accordance with the experimental results.

4.
J Colloid Interface Sci ; 287(1): 273-87, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15914175

RESUMO

Solubilization of dodecanol-limonene binary oil mixtures has been studied in saturated Winsor type I and III sodium dihexyl sulfosuccinate microemulsions. The systems showed different oil solubilization behavior below and above dodecanol volume fraction 0.2. Below 0.2 dodecanol volume fraction regular Winsor type microemulsions formed. The oil solubilization was characterized in this concentration range by the optimum salinity and the maximum characteristic length. Dodecanol showed Langmuirian-type surface excess adsorption at the vicinity of the surfactant layer. Variation of the optimum salinity and middle phase characteristic length with increasing dodecanol concentration could be linked to changes in the dodecanol surface excess. These relationships were used to develop new mathematical models for the optimum salinity and characteristic length as a function of oil phase composition. Both models yield excellent agreement with the data. Above dodecanol volume fraction 0.2 regular Winsor type III microemulsions are not formed. Therefore our new models are not applicable in this concentration range.

5.
Langmuir ; 20(16): 6560-9, 2004 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-15274555

RESUMO

When surfactants are used to solubilize oil, the oil to be solubilized is often a mixture of components with differing properties, for example, solubilization of drug molecules in microemulsion formulations, remediation of organic polluted aquifers using surfactants, and so forth. Previous research has demonstrated that selective solubilization of one organic component over the other may occur if the organic components are dissimilar. In this research, we investigated selective solubilization from benzene-limonene mixtures in Winsor type I and III microemulsion systems containing water, sodium di-n-hexyl sulfosuccinate, and NaCl. The effect of the oil phase composition and the electrolyte concentration on the selectivity was studied. It was found that the selectivity toward benzene was highest at low electrolyte and benzene concentrations, decreasing as the electrolyte or benzene concentration increased. The results are discussed on the basis of the two-state solubilization theory and by correlating the curvature of the surfactant film in the microemulsion with changes of the electrolyte concentration and the oil phase composition. A simple mathematical model is developed for the selectivity, which combines the two-state solubilization theory and the net-average curvature model of microemulsion solubilization to yield close agreement with the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...