Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Physiol Pharmacol ; 69(1): 99-107, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29769426

RESUMO

Intracellular calcium concentration ([Ca2+]i) is often buffered by using the cell-permeant acetoxy-methylester form of the Ca2+ chelator BAPTA (BAPTA-AM) under experimental conditions. This study was designed to investigate the time-dependent actions of extracellularly applied BAPTA-AM on action potential duration (APD) in cardiac cells. Action potentials were recorded from enzymatically isolated canine ventricular myocytes with conventional sharp microelectrodes. The effect of BAPTA-AM on the rapid delayed rectifier K+ current (IKr) was studied using conventional voltage clamp and action potential voltage clamp techniques. APD was lengthened by 5 µM BAPTA-AM - but not by BAPTA - and shortened by the Ca2+ ionophore A23187 in a time-dependent manner. The APD-lengthening effect of BAPTA-AM was strongly suppressed in the presence of nisoldipine, and enhanced in the presence of BAY K8644, suggesting that a shift in the [Ca2+]i-dependent inactivation of L-type Ca2+ current may be an important underlying mechanism. However, in the presence of the IKr-blocker dofetilide or E-4031 APD was shortened rather than lengthened by BAPTA-AM. Similarly, the APD-lengthening effect of 100 nM dofetilide was halved by the pretreatment with BAPTA-AM. In line with these results, IKr was significantly reduced by extracellularly applied BAPTA-AM under both conventional voltage clamp and action potential voltage clamp conditions. This inhibition of IKr was partially reversible and was not related to the Ca2+ chelator effect BAPTA-AM. The possible mechanisms involved in the APD-modifying effects of BAPTA-AM are discussed. It is concluded that BAPTA-AM has to be applied carefully to control [Ca2+]i in whole cell systems because of its direct inhibitory action on IKr.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Quelantes de Cálcio/farmacologia , Cálcio/metabolismo , Ácido Egtázico/análogos & derivados , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cães , Ácido Egtázico/farmacologia , Feminino , Ventrículos do Coração/citologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia
3.
J Physiol Pharmacol ; 67(4): 483-489, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27779469

RESUMO

Omecamtiv mecarbil (OM) is a myosin activator agent recently developed for treatment of heart failure. Although its action on extending systolic ejection time and increasing left ventricular ejection fraction is well documented, no data is available regarding its possible side-effects on cardiac ion channels. Therefore, the present study was designed to investigate the effects of OM on action potential morphology and the underlying ion currents in isolated canine ventricular myocytes using sharp microelectrodes, conventional patch clamp, and action potential voltage clamp techniques. OM displayed a concentration-dependent action on action potential configuration: 1 µM OM had no effect, while action potential duration and phase-1 repolarization were reduced and the plateau potential was depressed progressively at higher concentrations (10 - 100 µM; P < 0.05 compared to control). Accordingly, OM (10 µM) decreased the density of the transient outward K+ current (Ito), the L-type Ca2+ current (ICa) and the rapid delayed rectifier K+ current (IKr), but failed to modify the inward rectifier K+ current (IK1). It is concluded, that although the therapeutic concentrations of OM are not likely to influence cardiac ion currents significantly, alterations of the major cardiac ion currents can be anticipated at concentrations above those clinically tolerated.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Ureia/análogos & derivados , Potenciais de Ação/efeitos dos fármacos , Animais , Cães , Feminino , Ventrículos do Coração/citologia , Masculino , Miócitos Cardíacos/fisiologia , Miosinas , Técnicas de Patch-Clamp , Ureia/farmacologia
4.
PLoS One ; 11(3): e0151461, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019293

RESUMO

Beat-to-beat variability in repolarization (BVR) has been proposed as an arrhythmic risk marker for disease and pharmacological action. The mechanisms are unclear but BVR is thought to be a cell level manifestation of ion channel stochasticity, modulated by cell-to-cell differences in ionic conductances. In this study, we describe the construction of an experimentally-calibrated set of stochastic cardiac cell models that captures both BVR and cell-to-cell differences in BVR displayed in isolated canine action potential measurements using pharmacological agents. Simulated and experimental ranges of BVR are compared in control and under pharmacological inhibition, and the key ionic currents determining BVR under physiological and pharmacological conditions are identified. Results show that the 4-aminopyridine-sensitive transient outward potassium current, Ito1, is a fundamental driver of BVR in control and upon complete inhibition of the slow delayed rectifier potassium current, IKs. In contrast, IKs and the L-type calcium current, ICaL, become the major contributors to BVR upon inhibition of the fast delayed rectifier potassium current, IKr. This highlights both IKs and Ito1 as key contributors to repolarization reserve. Partial correlation analysis identifies the distribution of Ito1 channel numbers as an important independent determinant of the magnitude of BVR and drug-induced change in BVR in control and under pharmacological inhibition of ionic currents. Distributions in the number of IKs and ICaL channels only become independent determinants of the magnitude of BVR upon complete inhibition of IKr. These findings provide quantitative insights into the ionic causes of BVR as a marker for repolarization reserve, both under control condition and pharmacological inhibition.


Assuntos
Potenciais de Ação/fisiologia , Biologia Computacional/métodos , Ativação do Canal Iônico/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Potássio/fisiologia , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Algoritmos , Animais , Canais de Cálcio Tipo L/fisiologia , Células Cultivadas , Simulação por Computador , Cães , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Processos Estocásticos
5.
J Physiol Pharmacol ; 66(1): 73-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25716967

RESUMO

The aim of the present work was to study the influence of changes in intracellular calcium concentration ([Ca(2+)]i) on beat-to-beat variability (short term variability, SV) of action potential duration (APD) in isolated canine ventricular cardiomyocytes. Series of action potentials were recorded from enzymatically isolated canine ventricular cells using conventional microelectrode technique. Drug effects on SV were evaluated as relative SV changes determined by plotting the drug-induced changes in SV against corresponding changes in APD and comparing these data to the exponential SV-APD function obtained with inward and outward current injections. Exposure of myocytes to the Ca(2+) chelator BAPTA-AM (5 µM) decreased, while Ca(2+) ionophore A23187 (1 µM) increased the magnitude of relative SV. Both effects were primarily due to the concomitant changes in APD. Relative SV was reduced by BAPTA-AM under various experimental conditions including pretreatment with veratridine, BAY K8644, dofetilide or E-4031. Contribution of transient changes of [Ca(2+)]i due to Ca(2+) released from the sarcoplasmic reticulum (SR) was studied using 10 µM ryanodine and 1 µM cyclopiazonic acid: relative SV was reduced by both agents. Inhibition of the Na(+)-Ca(2+) exchanger by 1 µM SEA0400 increased relative SV. It is concluded that elevation of [Ca(2+)]i increases relative SV significantly. More importantly, Ca(2+) released from the SR is an important component of this effect.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Cálcio/metabolismo , Frequência Cardíaca , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Quelantes de Cálcio/farmacologia , Ionóforos de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cães , Feminino , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Fatores de Tempo
6.
Curr Pharm Des ; 21(8): 1073-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25354179

RESUMO

The cardiac late sodium current (INa,L) has been in the focus of research in the recent decade. The first reports on the sustained component of voltage activated sodium current date back to the seventies, but early studies interpreted this tiny current as a product of a few channels that fail to inactivate, having neither physiologic nor pathologic implications. Recently, the cardiac INa,L has emerged as a potentially major arrhythmogenic mechanism in various heart diseases, attracting the attention of clinicians and researchers. Research activity on INa,L has exponentially increased since Ranolazine, an FDA-approved antianginal drug was shown to successfully suppress cardiac arrhythmias by inhibiting INa,L. This review aims to summarize and discuss a series of papers focusing on the cardiac late sodium current and its regulation under physiological and pathological conditions. We will discuss critical evidences implicating INa,L as a potential target for treating myocardial dysfunction and cardiac arrhythmias.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Canais de Sódio/efeitos dos fármacos , Animais , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/fisiopatologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Canais de Sódio/fisiologia
7.
J Physiol Pharmacol ; 64(6): 807-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24388896

RESUMO

Tetrodotoxin (TTX) has been believed for a long time to be a selective inhibitor of voltage-gated fast Na(+) channels in excitable tissues, including mammalian myocardium. Recently TTX has been shown to block cardiac L-type Ca(2+) current (ICa,L). Furthermore, this inhibition was ascribed to binding of TTX to the outer pore of the Ca(2+) channel, contributing to the selectivity filter region. In this study the TTX-sensitivity of Cav1.2 channels, expressed in HEK cells, was tested using the whole cell version of the patch clamp technique and compared to the TTX-sensitivity of native canine ICa,L. Cav1.2 channels mediate Ca(2+) current in ventricular myocardium of various mammalian species. Surprisingly, TTX failed to inhibit Cav1.2 current up to the concentration of 100 µM - in contrast to ICa,L - in spite of the fact that the kinetic properties of the ICa,L and Cav1.2 currents were similar. The possible reasons for this discrepancy are discussed. Present results may question the suitability of a single pore-forming channel subunit, expressed in a transfection system, for electrophysiological or pharmacological studies.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/fisiologia , Tetrodotoxina/farmacologia , Animais , Linhagem Celular , Cães , Feminino , Humanos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia
8.
Br J Pharmacol ; 167(3): 599-611, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22563726

RESUMO

BACKGROUND AND PURPOSE: Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²âº current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH: Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS: In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS: The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canais de Potássio de Retificação Tardia/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Canais de Cálcio Tipo L/metabolismo , Cromanos/farmacologia , Cães , Feminino , Masculino , Miócitos Cardíacos/metabolismo , Nisoldipino/farmacologia , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia
9.
Acta Physiol (Oxf) ; 206(1): 42-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22520840

RESUMO

AIM: The aim of this work was to study antagonistic interactions between the effects of various types of Ca(2+) channel blockers and isoproterenol on the amplitude of L-type Ca(2+) current in canine ventricular cells. METHODS: Whole-cell version of the patch clamp technique was used to study the effect of isoproterenol on Ca(2+) current in the absence and presence of Ca(2+) channel-blocking agents, including nifedipine, nisoldipine, diltiazem, verapamil, CoCl(2) and MnCl(2) . RESULTS: Five micromolar Nifedipine, 1 µM nisoldipine, 10 µM diltiazem, 5 µM verapamil, 3 mM CoCl(2) and 5 mM MnCl(2) evoked uniformly a 90-95% blockade of Ca(2+) current in the absence of isoproterenol. Isoproterenol (100 nM) alone increased the amplitude of Ca(2+) current from 6.8 ± 1.3 to 23.7 ± 2.2 pA/pF in a reversible manner. Isoproterenol caused a marked enhancement of Ca(2+) current even in the presence of nifedipine, nisoldipine, diltiazem and verapamil, but not in the presence of CoCl(2) or MnCl(2) . CONCLUSION: The results indicate that the action of isoproterenol is different in the presence of organic and inorganic Ca(2+) channel blockers. CoCl(2) and MnCl(2) were able to fully prevent the effect of isoproterenol on Ca(2+) current, while the organic Ca(2+) channel blockers failed to do so. This has to be born in mind when the effects of organic Ca(2+) channel blockers are evaluated either experimentally or clinically under conditions of increased sympathetic tone.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Ventrículos do Coração/citologia , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células Cultivadas , Cães , Interações Medicamentosas , Feminino , Masculino
10.
Curr Med Chem ; 18(24): 3737-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21774754

RESUMO

Action potential voltage-clamp (APVC) is a technique to visualize the profile of various currents during the cardiac action potential. This review summarizes potential applications and limitations of APVC, the properties of the most important ion currents in nodal, atrial, and ventricular cardiomyocytes. Accordingly, the profiles ("fingerprints") of the major ion currents in canine ventricular myocytes, i.e. in cells of a species having action potential morphology and set of underlying ion currents very similar to those found in the human heart, are discussed in details. The degree of selectivity of various compounds, which is known to be a critical property of drugs used in APVC experiments, is overviewed. Thus the specificity of agents known to block sodium (tetrodotoxin, saxitoxin), potassium (chromanol 293B, HMR 1556, E-4031, dofetilide, sotalol, 4-aminopyridine, BaCl(2)), calcium (nifedipine, nisolpidine, nicardipine, diltiazem, verapamil, gallopamil), and chloride (anthracene-9-carboxylic acid, DIDS) channels, the inhibitor of the sodium-calcium exchanger (SEA0400), and the activator of sodium current (veratridine) are accordingly discussed. Based on a theory explaining how calcium current inhibitors block calcium channels, the structural comparison of the studied substances usually confirmed the results of the literature. Using these predictions, a hypothetical super-selective calcium channel inhibitor structure was designed. APVC is a valuable tool not only for studying the selectivity of the known ion channel blockers, but is also suitable for safety studies to exclude cardiac ion channel actions of any agent under development.


Assuntos
Potenciais de Ação , Fármacos Cardiovasculares/farmacologia , Canais Iônicos/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cães , Humanos , Canais Iônicos/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia
11.
Curr Med Chem ; 18(24): 3729-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21774755

RESUMO

Receptor-mediated changes in intracellular cyclic AMP concentration play critical role in the autonomic control of the heart, including regulation of a variety of ion channels via mechanisms involving protein kinase A, EPAC, or direct actions on cyclic nucleotide gated ion channels. In case of any ion channel, the actual signal transduction cascade can be identified by using properly modified cAMP derivatives with altered binding and activating properties. In this study we focus to structural modifications of cAMP resulting in specific activator and blocking effects on PKA or EPAC. Involvement of the cAMP-dependent signal transduction pathway in controlling rapid delayed rectifier K(+ ) current was studied in canine ventricular myocytes using these specific cAMP analogues. Adrenergic stimulation increased the density of I(Kr) in canine ventricular cells, which effect was mediated by a PKA-dependent but EPAC-independent pathway. It was also shown that intracellular application of large concentrations of cAMP failed to fully activate PKA comparing to the effect of isoproterenol, forskolin, or PDE-resistant cAMP derivatives. This difference was fully abolished following inhibition of phosphodiesterase by IBMX. These results are in line with the concept of compartmentalized release, action, and degradation of cAMP within signalosomes.


Assuntos
AMP Cíclico/análogos & derivados , Animais , Colforsina/farmacologia , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Cães , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Isoproterenol/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transdução de Sinais
12.
Curr Med Chem ; 18(24): 3714-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21774757

RESUMO

Calcium ions are crucial elements of excitation-contraction coupling in cardiac myocytes. The intracellular Ca(2+ ) concentration changes continously during the cardiac cycle, but the Ca(2+ ) entering to the cell serves as an intracellular second messenger, as well. The Ca(2+ ) as a second messenger influences the activity of many intracellular signalling pathways and regulates gene expression. In cardiac myocytes the major pathway for Ca(2+ ) entry into cells is L-type calcium channel (LTCC). The precise control of LTCC function is essential for maintaining the calcium homeostasis of cardiac myocytes. Dysregulation of LTCC may result in different diseases like cardiac hypertrophy, arrhytmias, heart failure. The physiological and pathological structural changes in the heart are induced in part by small G proteins. These proteins are involved in wide spectrum of cell biological functions including protein transport, regulation of cell proliferation, migration, apoptosis, and cytoskeletal rearrangement. Understanding the crosstalk between small G proteins and LTCC may help to understand the pathomechanism of different cardiac diseases and to develop a new generation of genetically-encoded Ca(2+ ) channel inhibitors.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ativação Enzimática/efeitos dos fármacos , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
13.
Curr Med Chem ; 18(24): 3707-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21774758

RESUMO

Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and reduce arrhythmogenic activity. In this review, we will discuss the structural and functional properties of CaMKII, the modes of its activation and the functional consequences of CaMKII activity on ion channels.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canais de Cloreto/metabolismo , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Canais de Potássio/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Canais de Sódio/metabolismo
14.
Curr Med Chem ; 18(24): 3720-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21774756

RESUMO

Recent large clinical trials found an association between the antidiabetic drug rosiglitazone therapy and increased risk of cardiovascular adverse events. The aim of this report is to elucidate the cardiac electrophysiological properties of rosiglitazone (R) on isolated rat and murine ventricular papillary muscle cells and canine ventricular myocytes using conventional microelectrode, whole cell voltage clamp, and action potential (AP) voltage clamp techniques. In histidine-decarboxylase knockout mice as well as in their wild types R (1-30 µM) shortened AP duration at 90% level of repolarization (APD(90)) and increased the AP amplitude (APA) in a concentration-dependent manner. In rat ventricular papillary muscle cells R (1-30 µM) caused a significant reduction of APA and maximum velocity of depolarization (V(max)) which was accompanied by lengthening of APD(90). In single canine ventricular myocytes at concentrations ≥10 µM R decreased the amplitude of phase-1 repolarization, the plateau potential and reduced V(max). R suppressed several ion currents in a concentration-dependent manner under voltage clamp conditions. The EC(50) value for this inhibition was 25.2±2.7 µM for the transient outward K(+ ) current (I(to)), 72.3±9.3 µM for the rapid delayed rectifier K(+ ) current (I(Kr)), and 82.5±9.4 µM for the L-type Ca(2+ ) current (I(Ca)) with Hill coefficients close to unity. The inward rectifier K(+ ) current (I(K1)) was not affected by R up to concentrations of 100 µM. Suppression of I(to), I(Kr), and I(Ca) has been confirmed under action potential voltage clamp conditions as well. The observed alterations in the AP morphology and densities of ion currents may predict serious proarrhythmic risk in case of intoxication with R as a consequence of overdose or decreased elimination of the drug, particularly in patients having multiple cardiovascular risk factors, such as elderly diabetic patients.


Assuntos
Fenômenos Eletrofisiológicos , Hipoglicemiantes/efeitos adversos , Tiazolidinedionas/efeitos adversos , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/fisiologia , Cães , Hipoglicemiantes/farmacologia , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Ratos , Rosiglitazona , Tiazolidinedionas/farmacologia
15.
Curr Med Chem ; 18(24): 3597-606, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21774765

RESUMO

Class 3 antiarrhythmic agents exhibit reverse rate-dependent lengthening of the action potential duration (APD), i.e. changes in APD are greater at longer than at shorter cycle lengths. In spite of the several theories developed to explain this reverse rate-dependency, its mechanism has been clarified only recently. The aim of the present study is to elucidate the mechanisms responsible for reverse rate-dependency in mammalian ventricular myocardium. Action potentials were recorded using conventional sharp microelectrodes from human, canine, rabbit, guinea pig, and rat ventricular myocardium in a rate-dependent manner. Rate-dependent drug-effects of various origin were studied using agents known to lengthen or shorten action potentials allowing thus to determine the drug-induced changes in APD as a function of the cycle length. Both drug-induced lengthening and shortening of action potentials displayed reverse rate-dependency in human, canine, and guinea pig preparations, but not in rabbit and rat myocardium. Similar results were obtained when repolarization was modified by injection of inward or outward current pulses in isolated canine cardiomyocytes. In contrast to reverse rate-dependence, drug-induced changes in APD well correlated with baseline APD values (i.e. that measured before the superfusion of drug or injection of current) in all of the preparations studied. Since the net membrane current (I(net)), determined from the action potential waveform at the middle of the plateau, was inversely proportional to APD, and consequently to cycle length, it is concluded that that reverse rate-dependency may simply reflect the inverse relationship linking I(net) to APD. In summary, reverse rate-dependency is an intrinsic property of drug action in the hearts of species showing positive APD - cycle length relationship, including humans. This implies that development of a pure K(+) channel blocking agent without reverse rate-dependent effects is not likely to be successful.


Assuntos
Potenciais de Ação/fisiologia , Antiarrítmicos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/química , Cães , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Ventrículos do Coração/efeitos dos fármacos , Humanos , Microeletrodos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Coelhos , Ratos , Função Ventricular/efeitos dos fármacos , Função Ventricular/fisiologia
16.
Br J Pharmacol ; 163(3): 499-509, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21232044

RESUMO

BACKGROUND AND PURPOSE: In spite of its widespread clinical application, there is little information on the cellular cardiac effects of the antidiabetic drug rosiglitazone in larger experimental animals. In the present study therefore concentration-dependent effects of rosiglitazone on action potential morphology and the underlying ion currents were studied in dog hearts. EXPERIMENTAL APPROACH: Standard microelectrode techniques, conventional whole cell patch clamp and action potential voltage clamp techniques were applied in enzymatically dispersed ventricular cells from dog hearts. KEY RESULTS: At concentrations ≥10 µM rosiglitazone decreased the amplitude of phase-1 repolarization, reduced the maximum velocity of depolarization and caused depression of the plateau potential. These effects developed rapidly and were readily reversible upon washout. Rosiglitazone suppressed several transmembrane ion currents, concentration-dependently, under conventional voltage clamp conditions and altered their kinetic properties. The EC(50) value for this inhibition was 25.2 ± 2.7 µM for the transient outward K(+) current (I(to)), 72.3 ± 9.3 µM for the rapid delayed rectifier K(+) current (I(Kr)) and 82.5 ± 9.4 µM for the L-type Ca(2+) current (I(Ca) ) with Hill coefficients close to unity. The inward rectifier K(+) current (I(K1)) was not affected by rosiglitazone up to concentrations of 100 µM. Suppression of I(to), I(Kr), and I(Ca) was confirmed also under action potential voltage clamp conditions. CONCLUSIONS AND IMPLICATIONS: Alterations in the densities and kinetic properties of ion currents may carry serious pro-arrhythmic risk in case of overdose with rosiglitazone, especially in patients having multiple cardiovascular risk factors, like elderly diabetic patients.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Hipoglicemiantes/efeitos adversos , Canais Iônicos/fisiologia , Células Musculares/efeitos dos fármacos , Tiazolidinedionas/efeitos adversos , Animais , Canais de Cálcio Tipo L/fisiologia , Cães , Feminino , Ventrículos do Coração/citologia , Técnicas In Vitro , Masculino , Células Musculares/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/fisiologia , Rosiglitazona , Canais de Sódio/fisiologia
17.
Br J Pharmacol ; 162(4): 890-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20973780

RESUMO

BACKGROUND AND PURPOSE: While the slow delayed rectifier K(+) current (I(Ks)) is known to be enhanced by the stimulation of ß-adrenoceptors in several mammalian species, phosphorylation-dependent regulation of the rapid delayed rectifier K(+) current (I(Kr)) is controversial. EXPERIMENTAL APPROACH: In the present study, therefore, the effect of isoprenaline (ISO), activators and inhibitors of the protein kinase A (PKA) pathway on I(Kr) and I(Ks) was studied in canine ventricular myocytes using the whole cell patch clamp technique. KEY RESULTS: I (Kr) was significantly increased (by 30-50%) following superfusion with ISO, forskolin or intracellular application of PKA activator cAMP analogues (cAMP, 8-Br-cAMP, 6-Bnz-cAMP). Inhibition of PKA by Rp-8-Br-cAMP had no effect on baseline I(Kr). The stimulating effect of ISO on I(Kr) was completely inhibited by selective ß1-adrenoceptor antagonists (metoprolol and CGP-20712A), by the PKA inhibitor Rp-8-Br-cAMP and by the PKA activator cAMP analogues, but not by the EPAC activator 8-pCPT-2'-O-Me-cAMP. In comparison, I(Ks) was increased threefold by the activation of PKA (by ISO or 8-Br-cAMP), and strongly reduced by the PKA inhibitor Rp-8-Br-cAMP. The ISO-induced enhancement of I(Ks) was decreased by Rp-8-Br-cAMP and completely inhibited by 8-Br-cAMP. CONCLUSIONS AND IMPLICATIONS: The results indicate that the stimulation of ß1-adrenoceptors increases I(Kr), similar to I(Ks), via the activation of PKA in canine ventricular cells.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Canais de Potássio de Retificação Tardia/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Receptores Adrenérgicos beta 1/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Células Cultivadas , AMP Cíclico/análogos & derivados , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cães , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Imidazóis/farmacologia , Isoproterenol/farmacologia , Cinética , Metoprolol/farmacologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única
18.
Br J Anaesth ; 99(5): 726-33, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17895236

RESUMO

BACKGROUND: In spite of its widespread clinical application, there is little information on the cellular cardiac effects of articaine. In the present study, the concentration-dependent effects of articaine on action potential morphology and the underlying ion currents were studied in isolated canine ventricular cardiomyocytes. METHODS: Action potentials were recorded from the enzymatically dispersed myocytes using sharp microelectrodes (16 cells from 3 dogs). Conventional patch clamp and action potential voltage clamp arrangements were used to study the effects of articaine on transmembrane ion currents (37 cells from 14 dogs). RESULTS: Articaine-induced concentration-dependent changes in action potential configuration including shortening of the action potentials, reduction of their amplitude and maximum velocity of depolarization (V(max)), suppression of early repolarization and depression of plateau. The EC50 value obtained for the V(max) block was 162 (sd 30) microM. Both the reduction of V(max) and action potential shortening were frequency dependent: the former was more prominent at shorter, while the latter at longer pacing cycle lengths. A rate dependent V(max) block, having rapid offset kinetics [tau = 91 (20) ms], was observed in addition to tonic block. Under voltage clamp conditions, a variety of ion currents were blocked by articaine: I(Ca) [EC50 = 471 (75) microM], I(to) [EC50 = 365 (62) microM], I(K1) [EC50 = 372 (46) microM], I(Kr) [EC50 = 278 (79) microM], and I(Ks) [EC50 = 326 (65) microM]. Hill coefficients were close to unity indicating a single binding site for articaine, except for I(K1). CONCLUSIONS: Articaine can modify cardiac action potentials and ion currents at concentrations higher than the therapeutic range which can be achieved only by accidental venous injection. Since its suppressive effects on the inward and outward currents are relatively well balanced, the articaine-induced changes in action potential morphology may be moderate even in the case of overdose.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anestésicos Locais/farmacologia , Carticaína/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Feminino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Masculino , Microeletrodos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo
19.
Acta Physiol (Oxf) ; 190(3): 189-98, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17394574

RESUMO

AIM: The aim of the present study was to give a parametric description of the most important K(+) currents flowing during canine ventricular action potential. METHODS: Inward rectifier K(+) current (I(K1)), rapid delayed rectifier K(+) current (I(Kr)), and transient outward K(+) current (I(to)) were dissected under action potential clamp conditions using BaCl(2), E-4031, and 4-aminopyridine, respectively. RESULTS: The maximum amplitude of I(to) was 3.0 +/- 0.23 pA/pF and its integral was 29.7 +/- 2.5 fC/pF. The current peaked 4.4 +/- 0.7 ms after the action potential upstroke and rapidly decayed to zero with a time constant of 7.4 +/- 0.6 ms. I(Kr) gradually increased during the plateau, peaked 7 ms before the time of maximum rate of repolarization (V(max)(-)) at -54.2 +/- 1.7 mV, had peak amplitude of 0.62 +/- 0.08 pA/pF, and integral of 57.6 +/- 6.7 fC/pF. I(K1) began to rise from -22.4 +/- 0.8 mV, peaked 1 ms after the time of V(max)(-) at -58.3 +/- 0.6 mV, had peak amplitude of 1.8 +/- 0.1 pA/pF, and integral of 61.6 +/- 6.2 fC/pF. Good correlation was observed between peak I(K1) and V(max)(-) (r = 0.93) but none between I(Kr) and V(max)(-). Neither I(K1) nor I(Kr) was frequency-dependent between 0.2 and 1.66 Hz. Congruently, I(Kr) failed to accumulate in canine myocytes at fast driving rates. CONCLUSION: Terminal repolarization is dominated by I(K1), but action potential duration is influenced by several ion currents simultaneously. As I(to) was not active during the plateau, and neither I(K1) nor I(Kr) was frequency-dependent, other currents must be responsible for the frequency dependence of action potential duration at normal and slow heart rates in canine ventricular cells.


Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Função Ventricular , Animais , Células Cultivadas , Cães , Eletrofisiologia , Feminino , Ventrículos do Coração/citologia , Masculino , Técnicas de Patch-Clamp
20.
Acta Physiol Scand ; 180(1): 39-47, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14706111

RESUMO

AIMS: Present study was performed to compare the dynamics of human L-type calcium current (ICa,L) flowing during rectangular voltage pulses, voltage ramps, and action potentials (APs) recorded from epicardiac and endocardiac canine ventricular cells. METHODS: ICa,L was recorded in single myocytes isolated from undiseased human hearts using the whole cell voltage clamp technique. RESULTS: The decay of ICa,L was monotonic when using rectangular pulses or endocardial APs as voltage commands, whereas the current became double-peaked (displaying a second rise and fall) during epicardial (EPI) APs or voltage ramps used to mimic EPI APs. These ICa,L profiles were associated with single-hooked and double-hooked phase-plane trajectories, respectively. No sustained current was observed during the AP commands. Kinetics of deactivation and recovery from inactivation of human ICa,L were determined using twin-pulse voltage protocols and voltage ramps, and the results were similar to those obtained previously in canine cells under identical experimental conditions. CONCLUSIONS: ICa,L can inactivate partially before and deactivate during the phase-1 repolarization of the epicardiac AP, and reopening of these channels seems to be associated with formation of the dome.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo L/fisiologia , Células Musculares/fisiologia , Função Ventricular , Técnicas de Cultura de Células , Ventrículos do Coração/citologia , Humanos , Cinética , Técnicas de Patch-Clamp/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...