Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 503(7476): 377-80, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24172902

RESUMO

Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

2.
Opt Express ; 20(22): 24987-5013, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187265

RESUMO

To realize a broadband, large-line-spacing astro-comb, suitable for wavelength calibration of astrophysical spectrographs, from a narrowband, femtosecond laser frequency comb ("source-comb"), one must integrate the source-comb with three additional components: (1) one or more filter cavities to multiply the source-comb's repetition rate and thus line spacing; (2) power amplifiers to boost the power of pulses from the filtered comb; and (3) highly nonlinear optical fiber to spectrally broaden the filtered and amplified narrowband frequency comb. In this paper we analyze the interplay of Fabry-Perot (FP) filter cavities with power amplifiers and nonlinear broadening fiber in the design of astro-combs optimized for radial-velocity (RV) calibration accuracy. We present analytic and numeric models and use them to evaluate a variety of FP filtering schemes (labeled as identical, co-prime, fraction-prime, and conjugate cavities), coupled to chirped-pulse amplification (CPA). We find that even a small nonlinear phase can reduce suppression of filtered comb lines, and increase RV error for spectrograph calibration. In general, filtering with two cavities prior to the CPA fiber amplifier outperforms an amplifier placed between the two cavities. In particular, filtering with conjugate cavities is able to provide <1 cm/s RV calibration error with >300 nm wavelength coverage. Such superior performance will facilitate the search for and characterization of Earth-like exoplanets, which requires <10 cm/s RV calibration error.

3.
Opt Lett ; 37(15): 3090-2, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859095

RESUMO

We propose a new astro-comb mode-filtering scheme composed of two Fabry-Perot cavities (coined "conjugate Fabry-Perot cavity pair"). Simulations indicate that this new filtering scheme makes the accuracy of astro-comb spectral lines more robust against systematic errors induced by nonlinear processes associated with power-amplifying and spectral-broadening optical fibers.

4.
Opt Express ; 20(13): 13711-26, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22714437

RESUMO

We deployed two wavelength calibrators based on laser frequency combs ("astro-combs") at an astronomical telescope. One astro-comb operated over a 100 nm band in the deep red (∼ 800 nm) and a second operated over a 20 nm band in the blue (∼ 400 nm). We used these red and blue astro-combs to calibrate a high-resolution astrophysical spectrograph integrated with a 1.5 m telescope, and demonstrated calibration precision and stability sufficient to enable detection of changes in stellar radial velocity < 1 m/s.


Assuntos
Astronomia/instrumentação , Lasers , Dispositivos Ópticos , Análise Espectral/instrumentação , Calibragem , Desenho de Equipamento , Análise de Falha de Equipamento
5.
Opt Express ; 18(18): 19175-84, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20940813

RESUMO

We demonstrate a tunable laser frequency comb operating near 420 nm with mode spacing of 20-50 GHz, usable bandwidth of 15 nm and output power per line of ~20 nW. Using the TRES spectrograph at the Fred Lawrence Whipple Observatory, we characterize this system to an accuracy below 1m/s, suitable for calibrating high-resolution astrophysical spectrographs used, e.g., in exoplanet studies.

6.
Opt Express ; 18(12): 13239-49, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20588453

RESUMO

Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an in-situ technique to determine the systematic shifts of astro-comb lines due to finite Fabry-Pérot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy better than 10 cm/s.

7.
Nature ; 452(7187): 610-2, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18385734

RESUMO

Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...