Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 194: 106693, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184016

RESUMO

Inhalation enables the delivery of drugs directly to the lung, increasing the retention for prolonged exposure and maximizing the therapeutic index. However, the differential regional lung exposure kinetics and systemic pharmacokinetics are not fully known, and their estimation is critical for pulmonary drug delivery. The study evaluates the pharmacokinetics of hydroxychloroquine in different regions of the respiratory tract for multiple routes of administration. We also evaluated the influence of different inhaled formulations on systemic and lung pharmacokinetics by identifying suitable nebulizers followed by early characterization of emitted aerosol physicochemical properties. The salt- and freebase-based formulations required different nebulizers and generated aerosol with different physicochemical properties. An administration of hydroxychloroquine by different routes resulted in varied systemic and lung pharmacokinetics, with oral administration resulting in low tissue concentrations in all regions of the respiratory tract. A nose-only inhalation exposure resulted in higher and sustained lung concentrations of hydroxychloroquine with a lung parenchyma-to-blood ratio of 386 after 1440 min post-exposure. The concentrations of hydroxychloroquine in different regions of the respiratory tract (i.e., nasal epithelium, larynx, trachea, bronchi, and lung parenchyma) varied over time, indicating different retention kinetics. The spatiotemporal distribution of hydroxychloroquine in the lung is different due to the heterogeneity of cell types, varying blood perfusion rate, clearance mechanisms, and deposition of inhaled aerosol along the respiratory tract. In addition to highlighting the varied lung physiology, these results demonstrate the ability of the lung to retain increased levels of inhaled lysosomotropic drugs. Such findings are critical for the development of future inhalation-based therapeutics, aiming to optimize target site exposure, enable precision medicine, and ultimately enhance clinical outcomes.


Assuntos
Hidroxicloroquina , Nebulizadores e Vaporizadores , Ratos , Animais , Hidroxicloroquina/metabolismo , Distribuição Tecidual , Aerossóis , Administração por Inalação , Pulmão/metabolismo , Sistemas de Liberação de Medicamentos
2.
Front Microbiol ; 12: 587745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276574

RESUMO

Cigarette smoking causes adverse health effects that might occur shortly after smoking initiation and lead to the development of inflammation and cardiorespiratory disease. Emerging studies have demonstrated the role of the intestinal microbiome in disease pathogenesis. The intestinal microbiome is susceptible to the influence of environmental factors such as smoking, and recent studies have indicated microbiome changes in smokers. Candidate modified risk tobacco products (CMRTP) are being developed to provide substitute products to lower smoking-related health risks in smokers who are unable or unwilling to quit. In this study, the ApoE-/- mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F and aerosols from two CMRTPs based on the heat-not-burn principle [carbon-heated tobacco product 1.2 (CHTP 1.2) and tobacco heating system 2.2 (THS 2.2)] on the intestinal microbiome over a 6-month period. The effect of cessation or switching to CHTP 1.2 after 3 months of CS exposure was also assessed. Next-generation sequencing was used to evaluate the impact of CMRTP aerosols in comparison to CS on microbiome composition and gene expression in the digestive tract of mice. Our analyses highlighted significant gene dysregulation in response to 3R4F exposure at 4 and 6 months. The findings showed an increase in the abundance of Akkermansiaceae upon CS exposure, which was reversed upon cessation. Cessation resulted in a significant decrease in Akkemansiaceae abundance, whereas switching to CHTP 1.2 resulted in an increase in Lactobacillaceae abundance. These microbial changes could be important for understanding the effect of CS on gut function and its relevance to disease pathogenesis via the microbiome.

3.
Arch Toxicol ; 95(5): 1805-1829, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33963423

RESUMO

Cigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe-/- mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations-(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)-or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure-volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotiana/toxicidade , Fumaça , Aerossóis , Animais , Apolipoproteínas E/metabolismo , Feminino , Exposição por Inalação , Pulmão , Camundongos , Nicotina , Testes de Função Respiratória , Fumar , Produtos do Tabaco , Transcriptoma
4.
J Appl Toxicol ; 41(10): 1598-1619, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33825214

RESUMO

Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.


Assuntos
Absorção Fisiológica , Apolipoproteínas/efeitos dos fármacos , Apolipoproteínas/metabolismo , Doenças Cardiovasculares/induzido quimicamente , Fumar Cigarros/efeitos adversos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Fumaça/efeitos adversos , Animais , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Pneumopatias/fisiopatologia , Masculino , Camundongos
5.
Life Sci ; 263: 118753, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189821

RESUMO

AIMS: Smoking is an important risk factor for the development of chronic obstructive pulmonary disease and cardiovascular diseases. This study aimed to further elucidate the role of ceramides, as a key lipid class dysregulated in disease states. MAIN METHODS: In this article we developed and validated LC-MS/MS method for ceramides (Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1(15Z)) for the absolute quantification. We deployed it together with proteomics and transcriptomic analysis to assess the effects of cigarette smoke (CS) from the reference cigarette as well as aerosols from heat-not-burn (HnB) tobacco and e-vapor products in apolipoprotein E-deficient (ApoE-/-) mice over several time points. KEY FINDINGS: In the lungs, CS exposure substantially elevated the ratios of Cer(d18:1/24:0) and Cer(d18:1/24:1) to Cer(d18:1/18:0) in two independent ApoE-/- mouse inhalation studies. Data from previous studies, in both ApoE-/- and wild-type mice, further confirmed the reproducibility of this finding. Elevation of these ceramide ratios was also observed in plasma/serum, the liver, and-for the Cer(d18:1/24:1(15Z)) to Cer(d18:1/18:0) ratio-the abdominal aorta. Also, the levels of acid ceramidase (Asah1) and glucocerebrosidase (Gba)-lysosomal enzymes involved in the hydrolysis of glucosylceramides-were consistently elevated in the lungs after CS exposure. In contrast, exposure to HnB tobacco product and e-vapor aerosols did not induce significant changes in the ceramide profiles or associated enzymes. SIGNIFICANCE: Our work in mice contributes to the accumulating evidence on the importance of ceramide ratios as biologically relevant markers for respiratory disorders, adding to their already demonstrated role in cardiovascular disease risk assessment in humans.


Assuntos
Apolipoproteínas E/genética , Ceramidas/metabolismo , Vapor do Cigarro Eletrônico/efeitos adversos , Pulmão/metabolismo , Fumaça/efeitos adversos , Aerossóis/efeitos adversos , Animais , Ceramidas/análise , Cromatografia Líquida/métodos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Fatores de Risco , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
6.
Chem Res Toxicol ; 33(10): 2550-2564, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32638588

RESUMO

Transcriptomic approaches can give insight into molecular mechanisms underlying chemical toxicity and are increasingly being used as part of toxicological assessments. To aid the interpretation of transcriptomic data, we have developed a systems toxicology method that relies on a computable biological network model. We created the first network model describing cardiotoxicity in zebrafish larvae-a valuable emerging model species in testing cardiotoxicity associated with drugs and chemicals. The network is based on scientific literature and represents hierarchical molecular pathways that lead from receptor activation to cardiac pathologies. To test the ability of our approach to detect cardiotoxic outcomes from transcriptomic data, we have selected three publicly available data sets that reported chemically induced heart pathologies in zebrafish larvae for five different chemicals. Network-based analysis detected cardiac perturbations for four out of five chemicals tested, for two of them using transcriptomic data collected up to 3 days before the onset of a visible phenotype. Additionally, we identified distinct molecular pathways that were activated by the different chemicals. The results demonstrate that the proposed integrational method can be used for evaluating the effects of chemicals on the zebrafish cardiac function and, together with observed cardiac apical end points, can provide a comprehensive method for connecting molecular events to organ toxicity. The computable network model is freely available and may be used to generate mechanistic hypotheses and quantifiable perturbation values from any zebrafish transcriptomic data.


Assuntos
Biologia Computacional , Coração/efeitos dos fármacos , Animais , Cardiotoxicidade , Coração/fisiopatologia , Peixe-Zebra/embriologia
7.
Comput Struct Biotechnol J ; 18: 1056-1073, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32419906

RESUMO

Cigarette smoke (CS) causes adverse health effects and, for smoker who do not quit, modified risk tobacco products (MRTPs) can be an alternative to reduce the risk of developing smoking-related diseases. Standard toxicological endpoints can lack sensitivity, with systems toxicology approaches yielding broader insights into toxicological mechanisms. In a 6-month systems toxicology study on ApoE-/- mice, we conducted an integrative multi-omics analysis to assess the effects of aerosols from the Carbon Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2-a potential and a candidate MRTP based on the heat-not-burn (HnB) principle-compared with CS at matched nicotine concentrations. Molecular exposure effects in the lungs were measured by mRNA/microRNA transcriptomics, proteomics, metabolomics, and lipidomics. Integrative data analysis included Multi-Omics Factor Analysis and multi-modality functional network interpretation. Across all five data modalities, CS exposure was associated with an increased inflammatory and oxidative stress response, and lipid/surfactant alterations. Upon HnB aerosol exposure these effects were much more limited or absent, with reversal of CS-induced effects upon cessation and switching to CHTP 1.2. Functional network analysis revealed CS-induced complex immunoregulatory interactions across the investigated molecular layers (e.g., itaconate, quinolinate, and miR-146) and highlighted the engagement of the heme-Hmox-bilirubin oxidative stress axis by CS. This work exemplifies how multi-omics approaches can be leveraged within systems toxicology studies and the generated multi-omics data set can facilitate the development of analysis methods and can yield further insights into the effects of toxicological exposures on the lung of mice.

8.
Arch Toxicol ; 94(6): 2163-2177, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32409933

RESUMO

Cigarette smoke (CS) exposure is one of the leading risk factors for human health. Nicotine-containing inhalable products, such as e-cigarettes, can effectively support tobacco harm reduction approaches. However, there are limited comparative data on the effects of the aerosols generated from electronic vapor products (e-vapor) and CS on bone. Here, we report the effects of e-vapor aerosols and CS on bone morphology, structure, and strength in a 6-month inhalation study. Eight-week-old ApoE-/- mice were exposed to aerosols from three different e-vapor formulations-CARRIER (propylene glycol and vegetable glycerol), BASE (CARRIER and nicotine), TEST (BASE and flavor)-to CS from 3R4F reference cigarettes at matched nicotine concentrations (35 µg/L) or to fresh air (Sham) (N = 10 per group). Tibiae were analyzed for bone morphology by µCT imaging, biomechanics by three-point bending, and by histological analysis. CS inhalation caused a significant decrease in cortical and total bone volume fraction and bone density relative to e-vapor aerosols. Additionally, CS exposure caused a decrease in ultimate load and stiffness. In contrast, bone structural and biomechanical parameters were not significantly affected by e-vapor aerosol or Sham exposure. At the dissection time point, there was no significant difference in body weight or tibia bone weight or length among the groups. Histological findings revealed microcracks in cortical bone areas among all exposed groups compared to Sham control. In conclusion, because of the bone-preserving effect of e-vapor aerosols relative to CS exposure, e-vapor products could potentially constitute less harmful alternatives to cigarettes in situations in which bone health is of importance.


Assuntos
Osso e Ossos/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Fumaça/efeitos adversos , Vaping/efeitos adversos , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Feminino , Exposição por Inalação , Camundongos Knockout para ApoE , Fatores de Tempo , Microtomografia por Raio-X
9.
Am J Physiol Heart Circ Physiol ; 318(3): H604-H631, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975625

RESUMO

Smoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE-/-) mice. The mice were exposed to aerosols from three different E-vapor formulations: 1) carrier (propylene glycol and vegetable glycerol), 2) base (carrier and nicotine), or 3) test (base and flavor) or to CS from 3R4F reference cigarettes for up to 6 mo. Concentrations of CS and base or test aerosols were matched at 35 µg nicotine/L. Exposure to CS, compared with sham-exposed fresh air controls, accelerated atherosclerotic plaque formation, whereas no such effect was seen for any of the three E-vapor aerosols. Molecular changes indicated disease mechanisms related to oxidative stress and inflammation in general, plus changes in calcium regulation, and altered cytoskeletal organization and microtubule dynamics in the left ventricle. While ejection fraction, fractional shortening, cardiac output, and isovolumic contraction time remained unchanged following E-vapor aerosols exposure, the nicotine-containing base and test aerosols caused an increase in isovolumic relaxation time similar to CS. A nicotine-related increase in pulse wave velocity and arterial stiffness was also observed, but it was significantly lower for base and test aerosols than for CS. These results demonstrate that in comparison with CS, E-vapor aerosols induce substantially lower biological responses associated with smoking-related cardiovascular diseases.NEW & NOTEWORTHY Analysis of key urinary oxidative stress markers and proinflammatory cytokines showed an absence of oxidative stress and inflammation in the animals exposed to E-vapor aerosols. Conversely, animals exposed to conventional cigarette smoke had high urinary levels of these markers. When compared with conventional cigarette smoke, E-vapor aerosols induced smaller atherosclerotic plaque surface area and volume. Systolic and diastolic cardiac function, as well as endothelial function, were further significantly less affected by electronic cigarette aerosols than conventional cigarette smoke. Molecular analysis demonstrated that E-vapor aerosols induce significantly smaller transcriptomic dysregulation in the heart and aorta compared with conventional cigarette smoke.


Assuntos
Aerossóis/toxicidade , Aterosclerose/etiologia , Doenças Cardiovasculares/etiologia , Vapor do Cigarro Eletrônico/toxicidade , Coração/efeitos dos fármacos , Fumaça/efeitos adversos , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Progressão da Doença , Feminino , Exposição por Inalação , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos
10.
Chem Biol Interact ; 315: 108887, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31705857

RESUMO

AIM: To investigate the molecular, structural, and functional impact of aerosols from candidate modified risk tobacco products (cMRTP), the Carbon Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2, compared with that of mainstream cigarette smoke (CS) on the cardiovascular system of ApoE-/- mice. METHODS: Female ApoE-/- mice were exposed to aerosols from THS 2.2 and CHTP 1.2 or to CS from the 3R4F reference cigarette for up to 6 months at matching nicotine concentrations. A Cessation and a Switching group (3 months exposure to 3R4F CS followed by filtered air or CHTP 1.2 for 3 months) were included. Cardiovascular effects were investigated by echocardiographic, histopathological, immunohistochemical, and transcriptomics analyses. RESULTS: Continuous exposure to cMRTP aerosols did not affect atherosclerosis progression, heart function, left ventricular (LV) structure, or the cardiovascular transcriptome. Exposure to 3R4F CS triggered atherosclerosis progression, reduced systolic ejection fraction and fractional shortening, caused heart LV hypertrophy, and initiated significant dysregulation in the transcriptomes of the heart ventricle and thoracic aorta. Importantly, the structural, functional, and molecular changes caused by 3R4F CS were improved in the smoking cessation and switching groups. CONCLUSION: Exposure to cMRTP aerosols lacked most of the CS exposure-related functional, structural, and molecular effects. Smoking cessation or switching to CHTP 1.2 aerosol caused similar recovery from the 3R4F CS effects in the ApoE-/- model, with no further acceleration of plaque progression beyond the aging-related rate.


Assuntos
Aerossóis/efeitos adversos , Apolipoproteínas E/metabolismo , Carbono/efeitos adversos , Sistema Cardiovascular/efeitos dos fármacos , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Aorta Torácica/efeitos dos fármacos , Aterosclerose/metabolismo , Sistema Cardiovascular/metabolismo , Feminino , Calefação/efeitos adversos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Fumar/efeitos adversos , Transcriptoma/efeitos dos fármacos
11.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603193

RESUMO

Knowledge of the molecular interactions of biological and chemical entities and their involvement in biological processes or clinical phenotypes is important for data interpretation. Unfortunately, this knowledge is mostly embedded in the literature in such a way that it is unavailable for automated data analysis procedures. Biological expression language (BEL) is a syntax representation allowing for the structured representation of a broad range of biological relationships. It is used in various situations to extract such knowledge and transform it into BEL networks. To support the tedious and time-intensive extraction work of curators with automated methods, we developed the BEL track within the framework of BioCreative Challenges. Within the BEL track, we provide training data and an evaluation environment to encourage the text mining community to tackle the automatic extraction of complex BEL relationships. In 2017 BioCreative VI, the 2015 BEL track was repeated with new test data. Although only minor improvements in text snippet retrieval for given statements were achieved during this second BEL task iteration, a significant increase of BEL statement extraction performance from provided sentences could be seen. The best performing system reached a 32% F-score for the extraction of complete BEL statements and with the given named entities this increased to 49%. This time, besides rule-based systems, new methods involving hierarchical sequence labeling and neural networks were applied for BEL statement extraction.


Assuntos
Mineração de Dados , Bases de Dados Factuais , Redes Neurais de Computação , Vocabulário Controlado
12.
Food Chem Toxicol ; 126: 113-141, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30763686

RESUMO

Smoking is one of the major modifiable risk factors in the development and progression of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Modified-risk tobacco products (MRTP) are being developed to provide substitute products for smokers who are unable or unwilling to quit, to lessen the smoking-related health risks. In this study, the ApoE-/- mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F, or aerosol from two potential MRTPs based on the heat-not-burn principle, carbon heated tobacco product 1.2 (CHTP1.2) and tobacco heating system 2.2 (THS 2.2), on the cardiorespiratory system over a 6-month period. In addition, cessation or switching to CHTP1.2 after 3 months of CS exposure was assessed. A systems toxicology approach combining physiology, histology and molecular measurements was used to evaluate the impact of MRTP aerosols in comparison to CS. CHTP1.2 and THS2.2 aerosols, compared with CS, demonstrated lower impact on the cardiorespiratory system, including low to absent lung inflammation and emphysematous changes, and reduced atherosclerotic plaque formation. Molecular analyses confirmed the lower engagement of pathological mechanisms by MRTP aerosols than CS. Both cessation and switching to CHTP1.2 reduced the observed CS effects to almost sham exposure levels.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Aerossóis/efeitos adversos , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Feminino , Camundongos , Camundongos Knockout , Nicotiana/efeitos adversos , Nicotiana/química , Produtos do Tabaco/análise
13.
Food Chem Toxicol ; 101: 157-167, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28111298

RESUMO

Experimental studies clearly demonstrate a causal effect of cigarette smoking on cardiovascular disease. To reduce the individual risk and population harm caused by smoking, alternative products to cigarettes are being developed. We recently reported on an apolipoprotein E-deficient (Apoe-/-) mouse inhalation study that compared the effects of exposure to aerosol from a candidate modified risk tobacco product, Tobacco Heating System 2.2 (THS2.2), and smoke from the reference cigarette (3R4F) on pulmonary and vascular biology. Here, we applied a transcriptomics approach to evaluate the impact of the exposure to 3R4F smoke and THS2.2 aerosol on heart tissues from the same cohort of mice. The systems response profiles demonstrated that 3R4F smoke exposure led to time-dependent transcriptomics changes (False Discovery Rate (FDR) < 0.05; 44 differentially expressed genes at 3-months; 491 at 8-months). Analysis of differentially expressed genes in the heart tissue indicated that 3R4F exposure induced the downregulation of genes involved in cytoskeleton organization and the contractile function of the heart, notably genes that encode beta actin (Actb), actinin alpha 4 (Actn4), and filamin C (Flnc). This was accompanied by the downregulation of genes related to the inflammatory response. None of these effects were observed in the group exposed to THS2.2 aerosol.


Assuntos
Aerossóis/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Nicotiana/toxicidade , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Aerossóis/administração & dosagem , Aerossóis/análise , Animais , Apolipoproteínas E/fisiologia , Biomarcadores/metabolismo , Doenças Cardiovasculares/etiologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Coração/fisiologia , Exposição por Inalação , Camundongos , Camundongos Knockout , Fumaça/análise , Produtos do Tabaco/análise
14.
J Cardiovasc Pharmacol Ther ; 22(2): 159-168, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27246357

RESUMO

INTRODUCTION: The present study was conducted to directly compare the efficacy of running exercise and telmisartan treatment on angiotensin (Ang) II-mediated atherosclerosis and plaque vulnerability. MATERIALS AND METHODS: Apolipoprotein E-deficient (ApoE-/-) mice with Ang II-mediated atherosclerosis (2-kidney, 1-clip [2K1C] renovascular hypertension model) were randomized into 3 groups: treadmill running exercise (RUN), telmisartan treatment (TEL), and sedentary untreated controls (SED) for 5 weeks. Atherosclerosis was assessed using histological and immunohistochemical analyses. Gene expression was determined by real-time reverse transcription polymerase chain reaction. RESULTS: TEL but not RUN mice significantly decreased (50%) atherosclerotic lesion size compared to SED. RUN and TEL promoted plaque stabilization to a similar degree in ApoE-/- 2K1C mice. However, plaque composition and vascular inflammatory markers were differently affected: RUN decreased plaque macrophage infiltration (35%), whereas TEL reduced lipid core size (88%); RUN significantly increased aortic peroxisome proliferator-activated receptor (PPAR)-α, -δ, and -γ expression, whereas TEL significantly modulated T-helper 1/T-helper 2 (Th1/Th2) aortic response toward an anti-inflammatory state (decreased aortic interleukin [IL] 2 to IL-10 and IL-2 to IL-13 expression ratios). Plaque smooth muscle cell content was similarly increased (128% and 141%, respectively). Aortic AT1 and AT2 receptor expression as well as aortic CD11c/CD206 and IL-1ß/IL-1ra expression ratios were not significantly modulated by either RUN or TEL. CONCLUSION: Running exercise and telmisartan treatment are equally effective in preventing Ang II-mediated plaque vulnerability but through distinct cellular and molecular mechanisms. Our findings further support the use of exercise training and selective AT1 receptor blocker therapies for atherosclerotic cardiovascular disease prevention.

15.
Gene Regul Syst Bio ; 10: 95-103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27840576

RESUMO

The cellular and molecular mechanisms behind the process of atherosclerotic plaque destabilization are complex, and molecular data from aortic plaques are difficult to interpret. Biological network models may overcome these difficulties and precisely quantify the molecular mechanisms impacted during disease progression. The atherosclerosis plaque destabilization biological network model was constructed with the semiautomated curation pipeline, BELIEF. Cellular and molecular mechanisms promoting plaque destabilization or rupture were captured in the network model. Public transcriptomic data sets were used to demonstrate the specificity of the network model and to capture the different mechanisms that were impacted in ApoE-/- mouse aorta at 6 and 32 weeks. We concluded that network models combined with the network perturbation amplitude algorithm provide a sensitive, quantitative method to follow disease progression at the molecular level. This approach can be used to investigate and quantify molecular mechanisms during plaque progression.

16.
Artigo em Inglês | MEDLINE | ID: mdl-27694210

RESUMO

Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users-learning BEL, working with a completely new interface, and performing complex curation-a score so close to the overall SUS average highlights the usability of BELIEF.Database URL: BELIEF is available at http://www.scaiview.com/belief/.


Assuntos
Mineração de Dados/métodos , Aprendizado de Máquina , Modelos Biológicos , Linguagens de Programação
17.
Artigo em Inglês | MEDLINE | ID: mdl-27554092

RESUMO

Success in extracting biological relationships is mainly dependent on the complexity of the task as well as the availability of high-quality training data. Here, we describe the new corpora in the systems biology modeling language BEL for training and testing biological relationship extraction systems that we prepared for the BioCreative V BEL track. BEL was designed to capture relationships not only between proteins or chemicals, but also complex events such as biological processes or disease states. A BEL nanopub is the smallest unit of information and represents a biological relationship with its provenance. In BEL relationships (called BEL statements), the entities are normalized to defined namespaces mainly derived from public repositories, such as sequence databases, MeSH or publicly available ontologies. In the BEL nanopubs, the BEL statements are associated with citation information and supportive evidence such as a text excerpt. To enable the training of extraction tools, we prepared BEL resources and made them available to the community. We selected a subset of these resources focusing on a reduced set of namespaces, namely, human and mouse genes, ChEBI chemicals, MeSH diseases and GO biological processes, as well as relationship types 'increases' and 'decreases'. The published training corpus contains 11 000 BEL statements from over 6000 supportive text excerpts. For method evaluation, we selected and re-annotated two smaller subcorpora containing 100 text excerpts. For this re-annotation, the inter-annotator agreement was measured by the BEL track evaluation environment and resulted in a maximal F-score of 91.18% for full statement agreement. In addition, for a set of 100 BEL statements, we do not only provide the gold standard expert annotations, but also text excerpts pre-selected by two automated systems. Those text excerpts were evaluated and manually annotated as true or false supportive in the course of the BioCreative V BEL track task.Database URL: http://wiki.openbel.org/display/BIOC/Datasets.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Processamento de Linguagem Natural , Animais , Humanos , Camundongos
18.
Curr Drug Discov Technol ; 12(3): 129-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26135855

RESUMO

Atherosclerosis is a progressive inflammatory thickening of the arterial wall resulting from increased cellularity and the accumulation of lipids, cellular debris, and extracellular matrix. Conventional determinations of plasma lipoproteins have resulted in a wealth of clinical data documenting the correlation between low- and high-density lipoproteins (LDL and HDL) and cardiovascular disease (CVD) risk. Current mass spectrometry methodologies allow the detection and quantification of multiple molecular lipid species with various structural and functional roles. The opportunities provided by lipidomics for lipid-based biomarker discovery are prominent in disease diagnostics, monitoring of drug efficacy, and translational model development. For example, the analysis of human plasma samples assessing the effects of statins has shown correlative effects between the LDL/HDL ratio and sphingomyelin and phosphatidylcholine. Additionally, at the vascular tissue level, lipids from different classes are enriched in human plaques of coronary arteries and in the aortas of apolipoprotein E-deficient mice exposed to cigarette smoke, highlighting a set of lipid biomarkers for translational research. Molecular lipidomics will provide insights in which other lipids may play important roles in vascular disease progression and will serve as novel markers for preventive as well as therapeutic purposes.


Assuntos
Aterosclerose/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Biologia de Sistemas/métodos , Animais , Apolipoproteínas E/genética , Aterosclerose/sangue , Biomarcadores/metabolismo , Doenças Cardiovasculares/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Humanos , Lipídeos/sangue , Camundongos , Camundongos Knockout , Placa Aterosclerótica/patologia
19.
Database (Oxford) ; 2015: bav057, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26200752

RESUMO

Capture and representation of scientific knowledge in a structured format are essential to improve the understanding of biological mechanisms involved in complex diseases. Biological knowledge and knowledge about standardized terminologies are difficult to capture from literature in a usable form. A semi-automated knowledge extraction workflow is presented that was developed to allow users to extract causal and correlative relationships from scientific literature and to transcribe them into the computable and human readable Biological Expression Language (BEL). The workflow combines state-of-the-art linguistic tools for recognition of various entities and extraction of knowledge from literature sources. Unlike most other approaches, the workflow outputs the results to a curation interface for manual curation and converts them into BEL documents that can be compiled to form biological networks. We developed a new semi-automated knowledge extraction workflow that was designed to capture and organize scientific knowledge and reduce the required curation skills and effort for this task. The workflow was used to build a network that represents the cellular and molecular mechanisms implicated in atherosclerotic plaque destabilization in an apolipoprotein-E-deficient (ApoE(-/-)) mouse model. The network was generated using knowledge extracted from the primary literature. The resultant atherosclerotic plaque destabilization network contains 304 nodes and 743 edges supported by 33 PubMed referenced articles. A comparison between the semi-automated and conventional curation processes showed similar results, but significantly reduced curation effort for the semi-automated process. Creating structured knowledge from unstructured text is an important step for the mechanistic interpretation and reusability of knowledge. Our new semi-automated knowledge extraction workflow reduced the curation skills and effort required to capture and organize scientific knowledge. The atherosclerotic plaque destabilization network that was generated is a causal network model for vascular disease demonstrating the usefulness of the workflow for knowledge extraction and construction of mechanistically meaningful biological networks.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Animais , Humanos , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
20.
Cardiovasc Res ; 100(3): 374-82, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24092446

RESUMO

AIMS: Changes in circulating brain-derived neurotrophic factor (BDNF) levels were reported in patients with or at risk for cardiovascular diseases associated with endothelial dysfunction, suggesting a link between BDNF and endothelial functionality. However, little is known on cardiovascular BDNF. Our aim was to investigate levels/localization, function, and relevance of cardiovascular BDNF. METHODS AND RESULTS: BDNF levels (western blotting) and localization (immunostaining) were assessed in the heart and aorta from rats with impaired (spontaneously hypertensive rats [SHR]), normal (Wistar Kyoto rats [WKY]), and improved (SHR and WKY subjected to physical training) endothelial function. BDNF levels were also measured in cultured endothelial cells (CECs) subjected to low and high shear stress. The cardiovascular effects of BDNF were investigated in isolated aortic rings and hearts. The results showed high BDNF levels in the heart and aorta, the expression being prominent in endothelial cells as compared with other cell types. Exogenous BDNF vasodilated aortic rings but changed neither coronary flow nor cardiac contractility. Hypertension was associated with decreased expression of BDNF in the endothelium, whereas physical training led to endothelial BDNF up-regulation not only in WKY but also in SHR. Exposure of CECs to high shear stress stimulated BDNF production and secretion. CONCLUSION: Cardiovascular BDNF is mainly localized within endothelial cells in which its expression is dependent on endothelial function. These results open new perspectives on the role of endothelial BDNF in cardiovascular health.


Assuntos
Aorta Torácica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Hipertensão/metabolismo , Condicionamento Físico Animal , Animais , Aorta Torácica/fisiopatologia , Células Cultivadas , Circulação Coronária , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Contração Miocárdica , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fluxo Sanguíneo Regional , Estresse Mecânico , Fatores de Tempo , Vasodilatação , Função Ventricular Esquerda , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...