Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172192, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604363

RESUMO

Quantifying pollutant removal by stormwater wetlands requires intensive sampling which is cost-prohibitive for authorities responsible for a large number of wetlands. Wetland managers require simple indicators that provide a practical means of estimating performance and prioritising maintenance works across their asset base. We therefore aimed to develop vegetation cover and metrics derived from monitoring water level, as simple indicators of likely nutrient pollutant removal from stormwater wetlands. Over a two-year period, we measured vegetation cover and water levels at 17 wetlands and used both to predict nitrogen (N) and phosphorus (P) removal. Vegetation cover explained 48 % of variation in total nitrogen (TN) removal; with a linear relationship suggesting an approximate 9 % loss in TN removal per 10 % decrease in vegetation cover. Vegetation cover is therefore a useful indicator of TN removal. Further development of remotely-sensed data on vegetation configuration, species and condition will likely improve the accuracy of TN removal estimates. Total phosphorus (TP) removal was not predicted by vegetation cover, but was weakly related to the median water level which explained 25 % of variation TP removal. Despite weak prediction of TP removal, metrics derived from water level sensors identified faults such as excessive inflow and inefficient outflow, which in combination explained 50 % of the variation in the median water level. Monitoring water levels therefore has the potential to detect faults prior to loss of vegetation cover and therefore TN removal, as well as inform the corrective action required.

2.
Sci Total Environ ; 898: 165643, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37474045

RESUMO

Green roofs can reduce stormwater runoff in urban areas by capturing rainfall. The extent of this capture is partially influenced by vegetation type and cover, which can be manipulated to optimise run-off reduction. However, in the absence of routine maintenance, planted green roof vegetation is often replaced by 'weedy' spontaneous species with unknown rainfall retention qualities. To better understand the role of spontaneous vegetation in green roof stormwater mitigation, we undertook a 100-day rainfall simulation involving 14 plant species that occur spontaneously on green roofs in Mediterranean-type climates. Green roof modules were filled with either 7 cm (shallow) or 14 cm (deep) substrate. The substrate was either left bare or sown with the spontaneous species community, which established approximately 100 % cover prior to the beginning of the rainfall simulation. During the simulation, modules were subjected to a "dry" and then a "wet" rainfall phase, each based on historical climate records from Melbourne, Australia. The "dry" treatment replicated the timing and depth of the driest rainfall period on record, while the "wet" treatment applied rainfall depths randomly selected from the 90th, 95th, and 99th percentiles of recorded rainfall. Rainfall retention, evapotranspiration, time to initiation of runoff and soil water content was measured for 17 rainfall events. Spontaneous vegetation cover and both species and functional diversity were measured at the end of each rainfall phase, and biomass was measured at the end of the wet phase. During the dry phase, modules with spontaneous vegetation cover retained 88 % of applied rainfall regardless of substrate depth and had 6 % greater retention than bare substrate. During the wet phase, deep substrate modules with spontaneous vegetation cover had 30 % greater retention than other treatment combinations. At the end of the wet phase, spontaneous vegetation in deep substrate had 42 % greater biomass, 19 % greater coverage and more than twofold greater functional richness than in shallow substrate. These findings demonstrate that spontaneous vegetation can increase stormwater retention on green roofs relative to bare substrate and have similar retention performance to commonly utilised species. However, the extent to which stormwater mitigation on green roofs is enhanced by spontaneous vegetation is dependent on factors that are more important for rainfall retention, such as substrate depth and rainfall patterns.


Assuntos
Conservação dos Recursos Naturais , Chuva , Arquitetura de Instituições de Saúde , Austrália , Plantas Daninhas , Movimentos da Água
3.
Sci Total Environ ; 894: 164762, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37302610

RESUMO

Impervious surfaces create large volumes of stormwater which degrades receiving waterways. Incorporating trees into biofilters can increase evapotranspiration and therefore reduce stormwater runoff. Tree species with i) high water use, ii) drought tolerance and iii) rapid and full recovery after drought have been suggested for biofilters to maximise runoff reduction while minimising drought stress. Moisture availability fluctuates greatly in biofilter substrates and trees growing in biofilters will likely experience multiple, extended drought events that increase trade-offs between these traits. Providing an internal water storage has the potential to reduce tree drought stress and increase evapotranspiration. Two urban tree species (Agonis flexuosa and Callistemon viminalis) were grown in plastic drums with biofilter profiles. Three irrigation treatments were used: well-watered, drought with an internal water storage and drought without an internal water storage. Transpiration, leaf water potential and biomass were measured to determine the effect of biofilter internal water storage and repeated drought events on tree water use, drought stress and growth. Biofilter internal water storage improved water use and reduced drought stress for A. flexuosa, whereas C. viminalis reduced leaf loss but saw no change in water use or drought stress. A. flexuosa with biofilter internal water storage was able to recover transpiration to well-watered levels after repeated droughts, while C. viminalis experienced reduced recovery ability. It is recommended all biofilters planted with trees should have internal water storage. In systems with lower moisture availability a species with more stomatal control, such as A. flexuosa, is recommended. If selecting a species with less stomatal control, such as C. viminalis, the internal water storage volume needs to be increased to avoid drought stress.


Assuntos
Árvores , Água , Árvores/metabolismo , Água/metabolismo , Secas , Resistência à Seca , Folhas de Planta/metabolismo
4.
Tree Physiol ; 43(9): 1501-1513, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37208014

RESUMO

Succulence describes the amount of water stored in cells or organs, regardless of plant life-form, including woody and herbaceous plants. In dry environments, plants with greater survival often have greater leaf succulence. However, it is unclear how leaf succulence relates to plant drought resistance strategies, including isohydry (closing stomata to maintain leaf water status) and anisohydry (adjusting cell turgor to tolerate low leaf water status), which exist on a continuum that can be quantified by hydroscape area (larger hydroscape area indicates more anisohydric). We evaluated 12 woody species with differing leaf succulence in a glasshouse dry-down experiment to determine relationships among leaf succulence (degree of leaf succulence, leaf succulent quotient and leaf thickness) and plant drought response (hydroscape area, plant water use, turgor loss point and predawn leaf water potential when transpiration ceased). Hydroscape areas ranged from 0.72 (Carpobrotus modestus S.T.Blake; crassulacean acid metabolism (CAM) plants) to 7.01 MPa2 (Rhagodia spinescens R.Br.; C3 plants), suggesting that C. modestus was more isohydric and R. spinescens was more anisohydric. More isohydric species C. modestus, Carpobrotus rossii (Haw.) Schwantes and Disphyma crassifolium (L.) L.Bolus (CAM plants) had greater leaf succulence, lower root allocation, used stored water and ceased transpiration at higher predawn leaf water potential, shortly after reaching their turgor loss point. The remaining nine species that are not CAM plants had larger hydroscape areas and ceased transpiration at lower predawn leaf water potential. Greater leaf succulence was not related to cumulative water loss until transpiration ceased in drying soils. All 12 species had high turgor loss points (-1.32 to -0.59 MPa), but turgor loss point was not related to hydroscape area or leaf succulence. Our data suggest that overall greater leaf succulence was related to isohydry, but this may have been influenced by the fact that these species were also CAM plants.


Assuntos
Resistência à Seca , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Folhas de Planta/fisiologia , Plantas/metabolismo , Secas , Água/fisiologia
5.
Sci Total Environ ; 889: 164043, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37187400

RESUMO

Green roofs are a promising engineered ecosystem designed to reduce stormwater runoff and restore vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate, however, this increases the risk of plant drought stress. This study determined whether lower plant density or preferentially redirecting rainfall to plants on green roofs could reduce drought stress without reducing rainfall retention. Plant density was manipulated, and metal structures were installed above the substrate surfaces to redirect the flow of rainwater towards plants (runoff zones). Green roof modules were used to test three plant density treatments: unplanted, half-planted (10 plants/m2) and fully-planted (18 plants/m2), and two runoff zone treatments which were installed in unplanted and half-planted modules. It was expected that 1) green roofs with greater plant density would experience more drought stress (i.e., lower leaf water status), and 2) green roofs with runoff zones would show higher ET and hence retention compared with those without runoff zones, as water will be directed to plants (run-on zones), facilitating growth. Contrary to the hypothesis, evapotranspiration (ET) and rainfall retention were similar for half-planted and fully-planted modules, such that ∼82 % of applied rainfall was retained. While both vegetation treatments dried out the substrates before rainfall was applied, the fully-planted modules dried out quicker and showed significantly lower leaf water status than half-planted modules. This indicates that planting at lower density may reduce plant drought stress, without reducing rainfall retention. Installing runoff zones marginally reduced ET and rainfall retention, likely due to shading by the runoff zone structures reducing evaporation from the substrate. However, runoff also occurred earlier where runoff zones were installed as they likely created preferential flow paths that reduced soil moisture and therefore ET and retention. Despite reduced rainfall retention, plants in modules with runoff zones showed significantly higher leaf water status. Reducing plant density therefore represents a simple means of reducing plant stress on green roofs without reducing rainfall retention. Installing runoff zones on green roofs is a novel approach that could reduce plant drought stress, particularly in hot and dry climates, albeit at a small cost of reduced rainfall retention.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Secas , Chuva , Plantas , Água , Movimentos da Água
6.
Sci Total Environ ; 812: 151466, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780836

RESUMO

Rainfall in cities can generate large volumes of stormwater runoff which degrades receiving waterways. Irrigating trees with runoff (passive irrigation) has the potential to increase transpiration and contribute to stormwater management by reducing runoff received by downstream waterways, but the stochastic nature of rainfall may expose trees with high transpiration to drought stress. We hypothesized that for success in passive irrigation systems, tree species should exhibit i) high maximum transpiration rates under well-watered conditions, ii) drought avoidance between rainfall events, and iii) high recovery of transpiration with rainfall following a drought. We assessed 13 commonly planted urban tree species in Melbourne, Australia against three metrics representing these behaviours (crop factor, hydroscape area, and transpiration recovery, respectively) in a glasshouse experiment. To aid species selection, we also investigated the relationships between these three metrics and commonly measured plant traits, including leaf turgor loss point, wood density, and sapwood to leaf area ratio (Huber value). Only one species (Tristaniopsis laurina) exhibited a combination of high crop factor (>1.1 mm mm-1 d-1) indicating high transpiration, small hydroscape area (<3 MPa2) indicating drought avoidance, and high transpiration recovery (>85%) following water deficit. Hence, of the species measured, it had the greatest potential to reduce runoff from passive irrigation systems while avoiding drought stress. Nevertheless, several other species showed moderate transpiration, hydroscape areas and transpiration recovery, indicating a balanced strategy likely suitable for passive irrigation systems. Huber values were negatively related to crop factor and transpiration recovery and may therefore be a useful tool to aid species selection. We propose that selecting tree species with high transpiration rates that can avoid drought and recover well could greatly reduce stormwater runoff, while supporting broader environmental benefits such as urban cooling in cities.


Assuntos
Secas , Árvores , Cidades , Folhas de Planta , Transpiração Vegetal , Água
7.
Tree Physiol ; 41(7): 1186-1198, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33530102

RESUMO

Over their lifetime, trees are repeatedly exposed to droughts. It is therefore important to understand whether repeated drought exposure makes trees more or less drought tolerant. Here, we investigated the effect of repeated droughts on functional trait expression and tree function in Eucalyptus obliqua. Further, we tested whether previous drought exposure enabled trees to avoid leaf death for longer under a subsequent severe drought. Trees were subjected for 1 year to 2 drought-rewatering cycles (drought treatment) or well-watered conditions, before imposing a severe drought. Trees in the drought treatment reduced their overall leaf area and biomass, whereas leaf-level anatomical, morphological and physiological traits remained mostly unaffected. There were no differences in water potential at the turgor loss point, leaf xylem vulnerability to embolism, leaf size, maximum xylem vessel diameter or cell wall thickness between treatments after the conditioning period. When exposed to a subsequent severe drought, trees previously exposed to drought were more drought tolerant due to a lower water potential at leaf death and tree-level morphological rather than physiological adjustments. Trees previously exposed to drought were smaller and used less water, which delayed leaf death for 39 days compared with 22 days for the well-watered trees. Our study indicates that previous drought exposure can facilitate tree-level morphological adjustment, which potentially enhances survival of E. obliqua trees during subsequent drought events.


Assuntos
Secas , Eucalyptus , Folhas de Planta , Árvores , Água , Xilema
8.
Sci Total Environ ; 753: 142012, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207433

RESUMO

Analysing the climate envelope of plant species has been suggested as a tool to predict the vulnerability of tree species in future urban climates. However, there is little evidence that the climate envelope of a plant species directly relates to the drought and thermal tolerance of that species, at least not at the resolution required to identify or rank species vulnerability. Here, we attempted to predict drought and thermal tolerance of commonly used urban tree species using climate variables derived exclusively from open-source global occurrence data. We quantified three drought and thermal tolerance traits for 43 urban tree species in a common garden experiment: stomatal sensitivity to vapour pressure deficit, leaf water potential at the turgor loss point, and leaf thermal tolerance. We then attempted to predict each tolerance trait from variables derived from the climate envelope of each species, using occurrence data from the Global Biodiversity Information Facility. We found no strong relationships between drought and thermal tolerance traits and climatic variables. Across wide environmental gradients, plant tolerance and climate are inherently linked. But our results suggest that climate envelopes determined from species occurrence data alone may not predict drought or thermal tolerance at the resolution required to select tree species for future urban forests. We should focus on identifying the most relevant strategies and traits required to describe tolerance which in combination with climate envelope analysis should ultimately predict growth and mortality of trees in urban landscapes.


Assuntos
Secas , Árvores , Mudança Climática , Florestas , Folhas de Planta , Água
9.
Water Res ; 173: 115597, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32087439

RESUMO

Evapotranspiration is an important aspect of the hydrological cycle in natural landscapes. In cities, evapotranspiration is typically limited by reduced vegetation and extensive impervious surfaces. Stormwater control measures (SCMs) seek, among other objectives, to move the urban hydrological cycle towards pre-development conditions, promoting processes such as infiltration and evapotranspiration. Yet, evapotranspiration is generally assumed to play a minor role in the water balance of stormwater control measures. Since established urban trees can use large quantities of water, their inclusion with stormwater control measures could potentially substantially increase evapotranspiration. We installed infiltration trenches alongside established Lophostemon confertus trees in the grassed verges of a typical suburban street to assess 1) whether redirecting stormwater to trees could increase their transpiration and 2) the contribution of transpiration to the water balance of stormwater control measures. We measured stormwater retention and transpiration for two spring-summer periods and estimated an annual water balance for the infiltration trenches. Although redirecting stormwater to trees did not increase their transpiration, these trees did use large volumes of water (up to 96 L d-1), corresponding to 3.4 mm d-1 per projected canopy area. Annually, stormwater retention was 24% of runoff and tree transpiration was equivalent to 17% of runoff. Our results suggest that streetscapes fitted with tree-based stormwater control measures, could increase the volumetric reduction of stormwater runoff by increasing the proportion of evapotranspiration in the water balance. Since public space is highly contested in cities and increasing canopy cover is a priority for many planners, integrating trees with stormwater control measures could provide dual benefits for a single management intervention, enabling a greater number of distributed stormwater control measures with smaller impervious catchments in the streetscape.


Assuntos
Movimentos da Água , Água , Cidades , Chuva , Estações do Ano
10.
Tree Physiol ; 40(2): 215-229, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860729

RESUMO

Understanding which hydraulic traits are under genetic control and/or are phenotypically plastic is essential in understanding how tree species will respond to rapid shifts in climate. We quantified hydraulic traits in Eucalyptus obliqua L'Her. across a precipitation gradient in the field to describe (i) trait variation in relation to long-term climate and (ii) the short-term (seasonal) ability of traits to adjust (i.e., phenotypic plasticity). Seedlings from each field population were raised under controlled conditions to assess (iii) which traits are under strong genetic control. In the field, drier populations had smaller leaves with anatomically thicker xylem vessel walls, a lower leaf hydraulic vulnerability and a lower water potential at turgor loss point, which likely confers higher hydraulic safety. Traits such as the water potential at turgor loss point and ratio of sapwood to leaf area (Huber value) showed significant adjustment from wet to dry conditions in the field, indicating phenotypic plasticity and importantly, the ability to increase hydraulic safety in the short term. In the nursery, seedlings from drier populations had smaller leaves and a lower leaf hydraulic vulnerability, suggesting that key traits associated with hydraulic safety are under strong genetic control. Overall, our study suggests a strong genetic control over traits associated with hydraulic safety, which may compromise the survival of wet-origin populations in drier future climates. However, phenotypic plasticity in physiological and morphological traits may confer sufficient hydraulic safety to facilitate genetic adaptation.


Assuntos
Secas , Xilema/genética , Aclimatação , Adaptação Fisiológica/genética , Folhas de Planta/genética , Árvores/genética , Água
11.
J Environ Manage ; 232: 404-412, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30500704

RESUMO

Green roofs can significantly reduce stormwater runoff volumes. Plant selection is crucial to retention performance, as it is influenced by how well plants dry out substrates between rainfall events. While the role of plants in evapotranspiration (ET) on green roofs is well-studied, their potential influence on retention via their impacts on water movement through substrates is poorly understood. We used a simulated rainfall experiment with plant species with different water use strategies to determine the key drivers of green roof retention performance. Overall per-event retention was very high (89-95%) and similar for all plant species and unplanted modules for small events. However, for larger events, some species showed lower retention than unplanted modules or low-water using succulent species. Despite the fact that these species were more effective at replenishing storage between rainfall events due to their higher ET, they reduced the maximum storage capacity of the substrate, likely due to their root systems creating preferential flow paths. This finding has important implications for green roofs, as although ET represents the primary means by which the storage capacity of green roofs can be regenerated, if species with high ET also reduce the maximum storage capacity, effective retention performance is reduced. Therefore, we suggest that species selection must first focus on how plants affect storage capacity in the first instance and consider water use strategies as a secondary objective.


Assuntos
Conservação dos Recursos Naturais , Chuva , Plantas , Água , Movimentos da Água
12.
Sci Total Environ ; 625: 775-781, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306165

RESUMO

Green roofs are increasingly being considered a promising engineered ecosystem for reducing stormwater runoff. Plants are a critical component of green roofs and it has been suggested that plants with high water use after rainfall, but which are also drought tolerant, can improve rainfall retention on green roofs. However, there is little evidence to show how plants with different water use strategies will affect green roof retention performance, either in monocultures or in mixed plantings. This study tested how monocultures and a mixture of herbaceous species (Dianella admixta, Lomandra longifolia and Stypandra glauca) affected rainfall retention on green roofs. These species were chosen based on their water use strategies and compared with a commonly used succulent species (Sedum pachyphyllum) with conservative water use. We measured retention performance for 67 rainfall events, quantifying all components of the water balance. We also compared growth for species in monocultures and mixtures. We found that monocultures of L. longifolia had the greatest stormwater retention and ET. Although S. glauca has a similar water use strategy to D. admixta, it had the lowest stormwater retention and ET. In both the mixture and as a monoculture, S. glauca created preferential flow pathways, resulting in lower substrate water contents which reduced ET and therefore rainfall retention. This species also dominated performance of the mixture, such that the mixture had lower ET and retention than all monocultures (except S. glauca). We suggest that root traits and their interaction with substrates should be considered alongside water use strategies for rainfall retention on green roofs.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Arquitetura de Instituições de Saúde , Movimentos da Água , Plantas/classificação , Chuva , Água
13.
Sci Total Environ ; 603-604: 340-351, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28633111

RESUMO

Green roofs are increasingly being used among the suite of tools designed to reduce the volume of surface water runoff generated by cities. Plants provide the primary mechanism for restoring the rainfall retention capacity of green roofs, but selecting plants with high water use is likely to increase drought stress. Using empirically-derived plant physiological parameters, we used a water balance model to assess the trade-off between rainfall retention and plant drought stress under a 30-year climate scenario. We compared high and low water users with either drought avoidance or drought tolerance strategies. Green roofs with low water-using, drought-avoiding species achieved high rainfall retention (66-81%) without experiencing significant drought stress. Roofs planted with other strategies showed high retention (72-90%), but they also experienced >50days of drought stress per year. However, not all species with the same strategy behaved similarly, therefore selecting plants based on water use and drought strategy alone does not guarantee survival in shallow substrates where drought stress can develop quickly. Despite this, it is more likely that green roofs will achieve high rainfall retention with minimal supplementary irrigation if planted with low water users with drought avoidance strategies.

14.
Plant Cell Environ ; 40(8): 1500-1511, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28342210

RESUMO

The water potential at turgor loss point (Ψtlp ) has been suggested as a key functional trait for determining plant drought tolerance, because of its close relationship with stomatal closure. Ψtlp may indicate drought tolerance as plants, which maintain gas exchange at lower midday water potentials as soil water availability declines also have lower Ψtlp . We evaluated 17 species from seasonally dry habitats, representing a range of life-forms, under well-watered and drought conditions, to determine how Ψtlp relates to stomatal sensitivity (pre-dawn water potential at stomatal closure: Ψgs0 ) and drought strategy (degree of isohydry or anisohydry; ΔΨMD between well-watered conditions and stomatal closure). Although Ψgs0 was related to Ψtlp , Ψgs0 was better related to drought strategy (ΔΨMD ). Drought avoiders (isohydric) closed stomata at water potentials higher than their Ψtlp ; whereas, drought tolerant (anisohydric) species maintained stomatal conductance at lower water potentials than their Ψtlp and were more dehydration tolerant. There was no significant relationship between Ψtlp and ΔΨMD . While Ψtlp has been related to biome water availability, we found that Ψtlp did not relate strongly to stomatal closure or drought strategy, for either drought avoiders or tolerators. We therefore suggest caution in using Ψtlp to predict vulnerability to drought.


Assuntos
Secas , Ecossistema , Folhas de Planta/fisiologia , Plantas/metabolismo , Estômatos de Plantas/fisiologia , Pressão , Especificidade da Espécie , Água/fisiologia
15.
Trends Plant Sci ; 20(10): 597-599, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26440428

RESUMO

Urban plantings are not only valuable resources for understanding 'urban plant physiology' but are 'living laboratories' for understanding plant response to climate change. Therefore, we encourage researchers who currently work in natural ecosystems to consider how urban plantings could enhance their research into plant physiological responses to a changing climate.


Assuntos
Planejamento de Cidades , Fenômenos Fisiológicos Vegetais , Plantas , Mudança Climática , Ecossistema
16.
Water Res ; 83: 195-204, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26150068

RESUMO

Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection.


Assuntos
Metais Pesados/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas Tolerantes a Sal/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Cyperaceae/metabolismo , Filtração , Chuva , Salinidade , Cloreto de Sódio/efeitos adversos
17.
Tree Physiol ; 31(10): 1052-66, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21908435

RESUMO

This study describes the physiological response of two co-occurring tree species (Eucalyptus marginata and Corymbia calophylla) to seasonal drought at low- and high-quality restored bauxite mine sites in south-western Australia. Seasonal changes in photosynthesis (A), stomatal conductance (g(s)), leaf water potential (ψ), leaf osmotic potential (ψ), leaf relative water content (RWC) and pressure-volume analysis were captured over an 18-month field study to (i) determine the nature and severity of physiological stress in relation to site quality and (ii) identify any physiological differences between the two species. Root system restriction at the low-quality site reduced maximum rates of gas exchange (g(s) and A) and increased water stress (midday ψ and daily RWC) in both species during drought. Both species showed high stomatal sensitivity during drought; however, E. marginata demonstrated a higher dehydration tolerance where ψ and RWC fell to -3.2 MPa and 73% compared with -2.4 MPa and 80% for C. calophylla. Corymbia calophylla showed lower g(s) and higher ψ and RWC during drought, indicating higher drought tolerance. Pressure-volume curves showed that cell-wall elasticity of E. marginata leaves increased in response to drought, while C. calophylla leaves showed lower osmotic potential at zero turgor in summer than in winter, indicating osmotic adjustment. Both species are clearly able to tolerate seasonal drought at hostile sites; however, by C. calophylla closing stomata earlier in the drought cycle, maintaining a higher water status during drought and having the additional mechanism of osmotic adjustment, it may have a greater capacity to survive extended periods of drought.


Assuntos
Biodegradação Ambiental , Secas , Eucalyptus/fisiologia , Água/fisiologia , Mineração , Pressão Osmótica , Fotossíntese , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA