Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 13232, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782126

RESUMO

The significant inversion symmetry breaking specific to wurtzite semiconductors, and the associated spontaneous electrical polarization, lead to outstanding features such as high density of carriers at the GaN/(Al,Ga)N interface-exploited in high-power/high-frequency electronics-and piezoelectric capabilities serving for nanodrives, sensors and energy harvesting devices. Here we show that the multifunctionality of nitride semiconductors encompasses also a magnetoelectric effect allowing to control the magnetization by an electric field. We first demonstrate that doping of GaN by Mn results in a semi-insulating material apt to sustain electric fields as high as 5 MV cm-1. Having such a material we find experimentally that the inverse piezoelectric effect controls the magnitude of the single-ion magnetic anisotropy specific to Mn3+ ions in GaN. The corresponding changes in the magnetization can be quantitatively described by a theory developed here.

2.
J Phys Condens Matter ; 19(17): 176202, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-21690948

RESUMO

Electron transport through a double quantum dot system is studied with the use of the Green function formalism based on the equation of motion method, and an interplay between interference and Coulomb blockade effects due to inter-dot correlations is discussed. A double structure with two Fano resonances (or antiresonances) is found in the conductance spectrum. Fano features are weakly influenced by the presence of Coulomb interaction but the conductance is strongly suppressed in the energy region with the Fermi level in the leads close to the aligned levels of both dots. This Coulomb blockade effect takes place when the coupling between the dots is of repulsive character. On the other hand, the conductance of an artificial molecule with attractive inter-dot coupling is only slightly modified in this energy region. As a sign of the coupling can be easily changed in a presence of an external magnetic field by changes of the magnetic flux there is the possibility to control variations of the conductance, which may be important from the application point of view.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA