Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(8): e0135007, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26302375

RESUMO

Somatic mosaicism occurs throughout normal development and contributes to numerous disease etiologies, including tumorigenesis and neurological disorders. Intratumor genetic heterogeneity is inherent to many cancers, creating challenges for effective treatments. Unfortunately, analysis of bulk DNA masks subclonal phylogenetic architectures created by the acquisition and distribution of somatic mutations amongst cells. As a result, single-cell genetic analysis is becoming recognized as vital for accurately characterizing cancers. Despite this, methods for single-cell genetics are lacking. Here we present an automated microfluidic workflow enabling efficient cell capture, lysis, and whole genome amplification (WGA). We find that ~90% of the genome is accessible in single cells with improved uniformity relative to current single-cell WGA methods. Allelic dropout (ADO) rates were limited to 13.75% and variant false discovery rates (SNV FDR) were 4.11x10(-6), on average. Application to ER-/PR-/HER2+ breast cancer cells and matched normal controls identified novel mutations that arose in a subpopulation of cells and effectively resolved the segregation of known cancer-related mutations with single-cell resolution. Finally, we demonstrate effective cell classification using mutation profiles with 10X average exome coverage depth per cell. Our data demonstrate an efficient automated microfluidic platform for single-cell WGA that enables the resolution of somatic mutation patterns in single cells.


Assuntos
Neoplasias da Mama/genética , Microfluídica/métodos , Mosaicismo , Análise de Célula Única , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA/genética , Exoma , Feminino , Heterogeneidade Genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação
2.
Nat Neurosci ; 18(4): 536-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25774451

RESUMO

Ten-eleven translocation (TET) enzymes mediate the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which is enriched in brain, and its ultimate DNA demethylation. However, the influence of TET and 5hmC on gene transcription in brain remains elusive. We found that ten-eleven translocation protein 1 (TET1) was downregulated in mouse nucleus accumbens (NAc), a key brain reward structure, by repeated cocaine administration, which enhanced behavioral responses to cocaine. We then identified 5hmC induction in putative enhancers and coding regions of genes that have pivotal roles in drug addiction. Such induction of 5hmC, which occurred similarly following TET1 knockdown alone, correlated with increased expression of these genes as well as with their alternative splicing in response to cocaine administration. In addition, 5hmC alterations at certain loci persisted for at least 1 month after cocaine exposure. Together, these reveal a previously unknown epigenetic mechanism of cocaine action and provide new insight into how 5hmC regulates transcription in brain in vivo.


Assuntos
Cocaína/farmacologia , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica/fisiologia , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/administração & dosagem , Citosina/metabolismo , Regulação para Baixo , Epigênese Genética , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos
3.
Nucleic Acids Res ; 43(5): 2757-66, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25722376

RESUMO

Detecting in vivo transcription factor (TF) binding is important for understanding gene regulatory circuitries. ChIP-seq is a powerful technique to empirically define TF binding in vivo. However, the multitude of distinct TFs makes genome-wide profiling for them all labor-intensive and costly. Algorithms for in silico prediction of TF binding have been developed, based mostly on histone modification or DNase I hypersensitivity data in conjunction with DNA motif and other genomic features. However, technical limitations of these methods prevent them from being applied broadly, especially in clinical settings. We conducted a comprehensive survey involving multiple cell lines, TFs, and methylation types and found that there are intimate relationships between TF binding and methylation level changes around the binding sites. Exploiting the connection between DNA methylation and TF binding, we proposed a novel supervised learning approach to predict TF-DNA interaction using data from base-resolution whole-genome methylation sequencing experiments. We devised beta-binomial models to characterize methylation data around TF binding sites and the background. Along with other static genomic features, we adopted a random forest framework to predict TF-DNA interaction. After conducting comprehensive tests, we saw that the proposed method accurately predicts TF binding and performs favorably versus competing methods.


Assuntos
Algoritmos , Biologia Computacional/métodos , Metilação de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Simulação por Computador , DNA/genética , DNA/metabolismo , Humanos , Masculino , Camundongos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Reprodutibilidade dos Testes , Transcriptoma
4.
J Cell Biol ; 206(2): 217-30, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25049272

RESUMO

In Drosophila melanogaster the reciprocal "Ping-Pong" cycle of PIWI-interacting RNA (piRNA)-directed RNA cleavage catalyzed by the endonuclease (or "Slicer") activities of the PIWI proteins Aubergine (Aub) and Argonaute3 (AGO3) has been proposed to expand the secondary piRNA population. However, the role of AGO3/Aub Slicer activity in piRNA amplification remains to be explored. We show that AGO3 Slicer activity is essential for piRNA amplification and that AGO3 inhibits the homotypic Aub:Aub Ping-Pong process in a Slicer-independent manner. We also find that expression of an AGO3 Slicer mutant causes ectopic accumulation of Armitage, a key component in the primary piRNA pathway, in the Drosophila melanogaster germline granules known as nuage. AGO3 also coexists and interacts with Armitage in the mitochondrial fraction. Furthermore, AGO3 acts in conjunction with the mitochondria-associated protein Zucchini to control the dynamic subcellular localization of Armitage between mitochondria and nuage in a Slicer-dependent fashion. Collectively, our findings uncover a new mechanism that couples mitochondria with nuage to regulate secondary piRNA amplification.


Assuntos
Proteínas Argonautas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Mitocôndrias/metabolismo , Organismos Geneticamente Modificados/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/fisiologia , RNA Helicases/análise , RNA Helicases/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(18): 6690-5, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24757056

RESUMO

During mammalian development, DNA methylation patterns need to be reset in primordial germ cells (PGCs) and preimplantation embryos. However, many LTR retrotransposons and imprinted genes are impervious to such global epigenetic reprogramming via hitherto undefined mechanisms. Here, we report that a subset of such genomic regions are resistant to widespread erasure of DNA methylation in mouse embryonic stem cells (mESCs) lacking the de novo DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b. Intriguingly, these loci are enriched for H3K9me3 in mESCs, implicating this mark in DNA methylation homeostasis. Indeed, deletion of the H3K9 methyltransferase SET domain bifurcated 1 (Setdb1) results in reduced H3K9me3 and DNA methylation levels at specific loci, concomitant with increased 5-hydroxymethylation (5hmC) and ten-eleven translocation 1 binding. Taken together, these data reveal that Setdb1 promotes the persistence of DNA methylation in mESCs, likely reflecting one mechanism by which DNA methylation is maintained at LTR retrotransposons and imprinted genes during developmental stages when DNA methylation is reprogrammed.


Assuntos
Metilação de DNA , Impressão Genômica , Histona-Lisina N-Metiltransferase/metabolismo , Retroelementos/genética , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Células-Tronco Embrionárias/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Epigênese Genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Knockout , DNA Metiltransferase 3B
6.
Front Biol (Beijing) ; 9(1): 66-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25568643

RESUMO

Mounting evidence points to critical roles for DNA modifications, including 5-methylcytosine (5mC) and its oxidized forms, in the development, plasticity and disorders of the mammalian nervous system. The novel DNA base 5-hydroxymethylcytosine (5hmC) is known to be capable of initiating passive or active DNA demethylation, but whether and how extensively 5hmC functions in shaping the post-mitotic neuronal DNA methylome is unclear. Here we report the genome-wide distribution of 5hmC in dentate granule neurons from adult mouse hippocampus in vivo. 5hmC in the neuronal genome is highly enriched in gene bodies, especially in exons, and correlates with gene expression. Direct genome-wide comparison of 5hmC distribution between embryonic stem cells and neurons reveals extensive differences, reflecting the functional disparity between these two cell types. Importantly, integrative analysis of 5hmC, overall DNA methylation and gene expression profiles of dentate granule neurons in vivo reveals the genome-wide antagonism between these two states of cytosine modifications, supporting a role for 5hmC in shaping the neuronal DNA methylome by promoting active DNA demethylation.

7.
Bioessays ; 36(1): 107-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24242211

RESUMO

Genomic function is dictated by a combination of DNA sequence and the molecular mechanisms controlling access to genetic information. Access to DNA can be determined by the interpretation of covalent modifications that influence the packaging of DNA into chromatin, including DNA methylation and histone modifications. These modifications are believed to be forms of "epigenetic codes" that exist in discernable combinations that reflect cellular phenotype. Although DNA methylation is known to play important roles in gene regulation and genomic function, its contribution to the encoding of epigenetic information is just beginning to emerge. Here we discuss paradigms associated with the various components of DNA methylation/demethylation and recent advances in the understanding of its dynamic regulation in the genome, integrating these mechanisms into a framework to explain how DNA methylation could contribute to epigenetic codes.


Assuntos
Metilação de DNA/genética , DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Cromatina/genética , Histonas/genética , Humanos
8.
Proc Natl Acad Sci U S A ; 110(41): 16562-7, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24023061

RESUMO

Deposition of insoluble protein aggregates is a hallmark of neurodegenerative diseases. The universal presence of ß-amyloid and tau in Alzheimer's disease (AD) has facilitated advancement of the amyloid cascade and tau hypotheses that have dominated AD pathogenesis research and therapeutic development. However, the underlying etiology of the disease remains to be fully elucidated. Here we report a comprehensive study of the human brain-insoluble proteome in AD by mass spectrometry. We identify 4,216 proteins, among which 36 proteins accumulate in the disease, including U1-70K and other U1 small nuclear ribonucleoprotein (U1 snRNP) spliceosome components. Similar accumulations in mild cognitive impairment cases indicate that spliceosome changes occur in early stages of AD. Multiple U1 snRNP subunits form cytoplasmic tangle-like structures in AD but not in other examined neurodegenerative disorders, including Parkinson disease and frontotemporal lobar degeneration. Comparison of RNA from AD and control brains reveals dysregulated RNA processing with accumulation of unspliced RNA species in AD, including myc box-dependent-interacting protein 1, clusterin, and presenilin-1. U1-70K knockdown or antisense oligonucleotide inhibition of U1 snRNP increases the protein level of amyloid precursor protein. Thus, our results demonstrate unique U1 snRNP pathology and implicate abnormal RNA splicing in AD pathogenesis.


Assuntos
Processamento Alternativo/fisiologia , Doença de Alzheimer/fisiopatologia , Encéfalo/metabolismo , Proteoma/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Processamento Alternativo/genética , Western Blotting , Cromatografia Líquida , Imunofluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Proteoma/genética , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
9.
Nat Cell Biol ; 15(6): 700-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23685628

RESUMO

Mammalian somatic cells can be directly reprogrammed into induced pluripotent stem cells (iPSCs) by introducing defined sets of transcription factors. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem cells (ESCs). Human ESCs (hESCs) contain 5-hydroxymethylcytosine (5hmC), which is generated through the oxidation of 5-methylcytosine by the TET enzyme family. Here we show that 5hmC levels increase significantly during reprogramming to human iPSCs mainly owing to TET1 activation, and this hydroxymethylation change is critical for optimal epigenetic reprogramming, but does not compromise primed pluripotency. Compared with hESCs, we find that iPSCs tend to form large-scale (100 kb-1.3 Mb) aberrant reprogramming hotspots in subtelomeric regions, most of which exhibit incomplete hydroxymethylation on CG sites. Strikingly, these 5hmC aberrant hotspots largely coincide (~80%) with aberrant iPSC-ESC non-CG methylation regions. Our results suggest that TET1-mediated 5hmC modification could contribute to the epigenetic variation of iPSCs and iPSC-hESC differences.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/química , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Células-Tronco Embrionárias , Ativação Enzimática , Epigênese Genética , Fibroblastos , Humanos , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cell ; 153(3): 678-91, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23602153

RESUMO

TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here, we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.


Assuntos
Citosina/análogos & derivados , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Técnicas Genéticas , Estudo de Associação Genômica Ampla , 5-Metilcitosina/metabolismo , Animais , Citosina/metabolismo , Camundongos , Elementos Reguladores de Transcrição , Fatores de Transcrição de p300-CBP/metabolismo
11.
Nat Commun ; 4: 1517, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23443545

RESUMO

5-methylcytosine is an epigenetic mark that affects a broad range of biological functions in mammals. The chemically inert methyl group prevents direct labelling for subsequent affinity purification and detection. Therefore, most current approaches for the analysis of 5-methylcytosine still have limitations of being either density-biased, lacking in robustness and consistency, or incapable of analysing 5-methylcytosine specifically. Here we present an approach, TAmC-Seq, which selectively tags 5-methylcytosine with an azide functionality that can be further labelled with a biotin for affinity purification, detection and genome-wide mapping. Using this covalent labelling approach, we demonstrate high sensitivity and specificity for known methylated loci, as well as increased CpG dinucleotide coverage at lower sequencing depth as compared with antibody-based enrichment, providing an improved efficiency in the 5-methylcytosine enrichment and genome-wide profiling.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma/genética , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de DNA/métodos , Coloração e Rotulagem , Animais , DNA/metabolismo , Metilação de DNA , Glucosiltransferases/metabolismo , Espectrometria de Massas , Camundongos , Oxirredução , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Sulfitos/metabolismo
12.
J Biol Chem ; 288(1): 723-36, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23129761

RESUMO

MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ~70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ~21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3' UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules.


Assuntos
Autoantígenos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Ribonucleoproteínas/metabolismo , Síndrome de Sjogren/metabolismo , Autoimunidade , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Modelos Biológicos , Estrutura Secundária de Proteína , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Ribonucleases/metabolismo , Antígeno SS-B
13.
Nat Protoc ; 7(12): 2159-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23196972

RESUMO

A complete understanding of the potential function of 5-hydroxymethylcytosine (5-hmC), a DNA cytosine modification in mammalian cells, requires an accurate single-base resolution sequencing method. Here we describe a modified bisulfite-sequencing method, Tet-assisted bisulfite sequencing (TAB-seq), which can identify 5-hmC at single-base resolution, as well as determine its abundance at each modification site. This protocol involves ß-glucosyltransferase (ß-GT)-mediated protection of 5-hmC (glucosylation) and recombinant mouse Tet1(mTet1)-mediated oxidation of 5-methylcytosine (5-mC) to 5-carboxylcytosine (5-caC). After the subsequent bisulfite treatment and PCR amplification, both cytosine and 5-caC (derived from 5-mC) are converted to thymine (T), whereas 5-hmC reads as C. The treated genomic DNA is suitable for both whole-genome and locus-specific sequencing. The entire procedure (which does not include data analysis) can be completed in 14 d for whole-genome sequencing or 7 d for locus-specific sequencing.


Assuntos
Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Glucosiltransferases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de DNA/métodos , Sulfitos/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Cromatografia Líquida de Alta Pressão , Citosina/metabolismo , Camundongos , Reação em Cadeia da Polimerase
14.
Hum Mol Genet ; 21(26): 5500-10, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23042784

RESUMO

5-Hydroxymethylcytosine (5-hmC) is a newly discovered modified form of cytosine that has been suspected to be an important epigenetic modification in neurodevelopment. While DNA methylation dynamics have already been implicated during neurodevelopment, little is known about hydroxymethylation in this process. Here, we report DNA hydroxymethylation dynamics during cerebellum development in the human brain. Overall, we find a positive correlation between 5-hmC levels and cerebellum development. Genome-wide profiling reveals that 5-hmC is highly enriched on specific gene regions including exons and especially the untranslated regions (UTRs), but it is depleted on introns and intergenic regions. Furthermore, we have identified fetus-specific and adult-specific differentially hydroxymethylated regions (DhMRs), most of which overlap with genes and CpG island shores. Surprisingly, during development, DhMRs are highly enriched in genes encoding mRNAs that can be regulated by fragile X mental retardation protein (FMRP), some of which are disrupted in autism, as well as in many known autism genes. Our results suggest that 5-hmC-mediated epigenetic regulation may broadly impact the development of the human brain, and its dysregulation could contribute to the molecular pathogenesis of neurodevelopmental disorders. Accession number: Sequencing data have been deposited to GEO with accession number GSE40539.


Assuntos
Cerebelo/metabolismo , Citosina/análogos & derivados , Metilação de DNA , DNA/genética , 5-Metilcitosina/análogos & derivados , Adulto , Ilhas de CpG , Citosina/metabolismo , DNA/química , DNA Intergênico , Epigênese Genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
15.
Cell ; 149(6): 1368-80, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22608086

RESUMO

The study of 5-hydroxylmethylcytosines (5hmC) has been hampered by the lack of a method to map it at single-base resolution on a genome-wide scale. Affinity purification-based methods cannot precisely locate 5hmC nor accurately determine its relative abundance at each modified site. We here present a genome-wide approach, Tet-assisted bisulfite sequencing (TAB-Seq), that when combined with traditional bisulfite sequencing can be used for mapping 5hmC at base resolution and quantifying the relative abundance of 5hmC as well as 5mC. Application of this method to embryonic stem cells not only confirms widespread distribution of 5hmC in the mammalian genome but also reveals sequence bias and strand asymmetry at 5hmC sites. We observe high levels of 5hmC and reciprocally low levels of 5mC near but not on transcription factor-binding sites. Additionally, the relative abundance of 5hmC varies significantly among distinct functional sequence elements, suggesting different mechanisms for 5hmC deposition and maintenance.


Assuntos
Citosina/análogos & derivados , Estudo de Associação Genômica Ampla , Análise de Sequência de DNA/métodos , 5-Metilcitosina/análise , Animais , Citosina/análise , Células-Tronco Embrionárias/metabolismo , Epigenômica , Regulação da Expressão Gênica , Genoma Humano , Humanos , Camundongos
16.
Bio Protoc ; 2(15)2012 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27453898

RESUMO

5-Hydroxymethylcytosine (5-hmC) is a newly discovered DNA modification in mammalian genomes. This protocol is to be a highly efficient and selective chemical approach to label and capture 5-hmC, taking advantage of a bacteriophage enzyme that adds a glucose moiety to 5-hmC specifically, which could in turn be used for high-throughput mapping via next-generation sequencing.

17.
Nat Neurosci ; 14(12): 1607-16, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037496

RESUMO

DNA methylation dynamics influence brain function and are altered in neurological disorders. 5-hydroxymethylcytosine (5-hmC), a DNA base that is derived from 5-methylcytosine, accounts for ∼40% of modified cytosine in the brain and has been implicated in DNA methylation-related plasticity. We mapped 5-hmC genome-wide in mouse hippocampus and cerebellum at three different ages, which allowed us to assess its stability and dynamic regulation during postnatal neurodevelopment through adulthood. We found developmentally programmed acquisition of 5-hmC in neuronal cells. Epigenomic localization of 5-hmC-regulated regions revealed stable and dynamically modified loci during neurodevelopment and aging. By profiling 5-hmC in human cerebellum, we found conserved genomic features of 5-hmC. Finally, we found that 5-hmC levels were inversely correlated with methyl-CpG-binding protein 2 dosage, a protein encoded by a gene in which mutations cause Rett syndrome. These data suggest that 5-hmC-mediated epigenetic modification is critical in neurodevelopment and diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Citosina/análogos & derivados , Epigenômica , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/crescimento & desenvolvimento , 5-Metilcitosina/análogos & derivados , Envelhecimento/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Cerebelo/metabolismo , Deleção Cromossômica , Mapeamento Cromossômico , Citosina/metabolismo , Citosina/farmacologia , Metilação de DNA , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Imunoprecipitação , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Fosfopiruvato Hidratase/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Cromossomo X/genética
18.
PLoS Genet ; 7(6): e1002154, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731508

RESUMO

Covalent modification of DNA distinguishes cellular identities and is crucial for regulating the pluripotency and differentiation of embryonic stem (ES) cells. The recent demonstration that 5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC) in ES cells has revealed a novel regulatory paradigm to modulate the epigenetic landscape of pluripotency. To understand the role of 5-hmC in the epigenomic landscape of pluripotent cells, here we profile the genome-wide 5-hmC distribution and correlate it with the genomic profiles of 11 diverse histone modifications and six transcription factors in human ES cells. By integrating genomic 5-hmC signals with maps of histone enrichment, we link particular pluripotency-associated chromatin contexts with 5-hmC. Intriguingly, through additional correlations with defined chromatin signatures at promoter and enhancer subtypes, we show distinct enrichment of 5-hmC at enhancers marked with H3K4me1 and H3K27ac. These results suggest potential role(s) for 5-hmC in the regulation of specific promoters and enhancers. In addition, our results provide a detailed epigenomic map of 5-hmC from which to pursue future functional studies on the diverse regulatory roles associated with 5-hmC.


Assuntos
Citosina/análogos & derivados , Células-Tronco Embrionárias/citologia , Epigenômica , Genoma Humano , 5-Metilcitosina/metabolismo , Sítios de Ligação , Linhagem Celular , Mapeamento Cromossômico , Citosina/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Biblioteca Gênica , Heterocromatina/química , Histonas/metabolismo , Humanos , Immunoblotting , Metáfase , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
19.
Nat Biotechnol ; 29(1): 68-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151123

RESUMO

In contrast to 5-methylcytosine (5-mC), which has been studied extensively, little is known about 5-hydroxymethylcytosine (5-hmC), a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types. Here we present a method for determining the genome-wide distribution of 5-hmC. We use the T4 bacteriophage ß-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group can be chemically modified with biotin for detection, affinity enrichment and sequencing of 5-hmC-containing DNA fragments in mammalian genomes. Using this method, we demonstrate that 5-hmC is present in human cell lines beyond those previously recognized. We also find a gene expression level-dependent enrichment of intragenic 5-hmC in mouse cerebellum and an age-dependent acquisition of this modification in specific gene bodies linked to neurodegenerative disorders.


Assuntos
Biotina/química , Citosina/análogos & derivados , DNA/química , Genoma Humano , Genoma , Coloração e Rotulagem/métodos , 5-Metilcitosina/análogos & derivados , Animais , Bacteriófago T4/enzimologia , Cerebelo/química , Citosina/análise , DNA/genética , Glucosiltransferases/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Análise de Sequência de DNA
20.
Stem Cells ; 28(6): 1060-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20506192

RESUMO

The maturation of young neurons is regulated by complex mechanisms and dysregulation of this process is frequently found in neurodevepmental disorders. MicroRNAs have been implicated in several steps of neuronal maturation including dendritic and axonal growth, spine development, and synaptogenesis. We demonstrate that one brain-enriched microRNA, miR-137, has a significant role in regulating neuronal maturation. Overexpression of miR-137 inhibits dendritic morphogenesis, phenotypic maturation, and spine development both in brain and cultured primary neurons. On the other hand, a reduction in miR-137 had opposite effects. We further show that miR-137 targets the Mind bomb one (Mib1) protein through the conserved target site located in the 3' untranslated region of Mib1 messenger RNA. Mib1 is an ubiquitin ligase known to be important for neurodevelopment. We show that exogenously expressed Mib1 could partially rescue the phenotypes associated with miR-137 overexpression. These results demonstrate a novel miRNA-mediated mechanism involving miR-137 and Mib1 that function to regulate neuronal maturation and dendritic morphogenesis during development.


Assuntos
Diferenciação Celular , MicroRNAs/genética , Neurônios/citologia , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Dendritos/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Biossíntese de Proteínas , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...