Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0175223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966202

RESUMO

IMPORTANCE: The genus of Mycobacterium includes important clinical pathogens (M. tuberculosis). Bacteria of this genus share the unusual features of their cell cycle such as asymmetric polar cell elongation and long generation time. Markedly, control of the mycobacterial cell cycle still remains not fully understood. The main cell growth determinant in mycobacteria is the essential protein DivIVA, which is also involved in cell division. DivIVA activity is controlled by phosphorylation, but the mechanism and significance of this process are unknown. Here, we show how the previously established protein interaction partner of DivIVA in mycobacteria, the segregation protein ParA, affects the DivIVA subcellular distribution. We also demonstrate the role of a newly identified M. smegmatis DivIVA and ParA interaction partner, a protein named PapM, and we establish how their interactions are modulated by phosphorylation. Demonstrating that the tripartite interplay affects the mycobacterial cell cycle contributes to the general understanding of mycobacterial growth regulation.


Assuntos
Mycobacterium smegmatis , Mycobacterium tuberculosis , Mycobacterium smegmatis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Ciclo Celular , Peptídeos e Proteínas de Sinalização Intercelular , Mycobacterium tuberculosis/metabolismo
2.
Cells ; 12(5)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36899913

RESUMO

Pesticide use cannot be completely abandoned in modern agriculture. Among agrochemicals, glyphosate is one of the most popular and, at the same time, most divisive herbicide. Since the chemicalization of agriculture is detrimental, various attempts are being made to reduce it. Adjuvants-substances that increase the efficiency of foliar application-can be used to reduce the amount of herbicides used. We propose low-molecular-weight dioxolanes as adjuvants for herbicides. These compounds quickly convert to carbon dioxide and water and do not harm plants. The aim of this study was to evaluate the efficacy of RoundUp® 360 Plus supported by three potential adjuvants: 2,2-dimethyl-1,3-dioxolane (DMD), 2,2,4-trimethyl-1,3-dioxolane (TMD), and (2,2-dimethyl-1,3-dioxan-4-yl)methanol (DDM), on a common weed species Chenopodium album L., under greenhouse conditions. Chlorophyll a fluorescence parameters and analysis of the polyphasic fluorescence (OJIP) curve, which examines changes in the photochemical efficiency of photosystem II, were used to measure plant sensitivity to glyphosate stress and verified the efficacy achieved by tested formulations. The effective dose (ED) values obtained showed that the weed tested was sensitive to reduced doses of glyphosate, with 720 mg/L needed to achieve 100% effectiveness. Compared to the glyphosate assisted with DMD, TMD, and DDM, ED was reduced by 40%, 50%, and 40%, respectively. The application of all dioxolanes at a concentration equal to 1 vol.% significantly enhanced the herbicide's effect. Our study showed that for C. album there was a correlation between the change in OJIP curve kinetics and the applied dose of glyphosate. By analyzing the discrepancies in the curves, it is possible to show the effect of different herbicide formulations with or without dioxolanes at an early stage of its action, thus minimizing the time for testing new substances as adjuvants.


Assuntos
Dioxolanos , Herbicidas , Complexo de Proteína do Fotossistema II , Clorofila A , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Glifosato
3.
Curr Genet ; 64(3): 575-580, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29189894

RESUMO

Precisely controlled mechanisms have been evolved to rescue impeded DNA replication resulting from encountered obstacles and involve a set of low-fidelity translesion synthesis (TLS) DNA polymerases. Studies in recent years have brought new insights into those TLS polymerases, especially concerning the structure and subunit composition of DNA polymerase zeta (Pol ζ). Pol ζ is predominantly involved in induced mutagenesis as well as the bypass of noncanonical DNA structures, and it is proficient in extending from terminal mismatched nucleotides incorporated by major replicative DNA polymerases. Two active forms of Pol ζ, heterodimeric (Pol ζ2) and heterotetrameric (Pol ζ4) ones, have been identified and studied. Here, in the light of recent publications regarding induced and spontaneous mutagenesis and diverse interactions within Pol ζ holoenzyme, combined with Pol ζ binding to the TLS polymerase Rev1p, we discuss the subunit composition of Pol ζ in various cellular physiological conditions. Available data show that it is the heterotetrameric form of Pol ζ that is involved both during spontaneous and induced mutagenesis, and underline the importance of interactions within Pol ζ when an increased Pol ζ recruitment occurs. Understanding Pol ζ function in the bypass of DNA obstacles would give a significant insight into cellular tolerance of DNA damage, genetic instability and the onset of cancer progression.


Assuntos
Biopolímeros/química , Biopolímeros/metabolismo , Mapas de Interação de Proteínas , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Microbiol ; 106(4): 659-672, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28941243

RESUMO

Eukaryotic DNA replication is performed by high-fidelity multi-subunit replicative B-family DNA polymerases (Pols) α, δ and ɛ. Those complexes are composed of catalytic and accessory subunits and organized in multicomplex machinery: the replisome. The fourth B-family member, DNA polymerase zeta (Pol ζ), is responsible for a large portion of mutagenesis in eukaryotic cells. Two forms of Pol ζ have been identified, a hetero-dimeric (Pol ζ2 ) and a hetero-tetrameric (Pol ζ4 ) ones and recent data have demonstrated that Pol ζ4 is responsible for damage-induced mutagenesis. Here, using yeast Pol ζ mutant defective in the assembly of the Pol ζ four-subunit form, we show in vivo that [4Fe-4S] cluster in Pol ζ catalytic subunit (Rev3p) is also required for spontaneous (wild-type cells) and defective-replisome-induced mutagenesis - DRIM (pol3-Y708A, pol2-1 or psf1-100 cells), when cells are not treated with any external damaging agents.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...