Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 25: 34-46, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38549954

RESUMO

ASCOT (an acronym derived from Ag-Silver, Copper Oxide, Titanium Oxide) is a user-friendly web tool for digital construction of electrically neutral, energy-minimized spherical nanoparticles (NPs) of Ag, CuO, and TiO2 (both Anatase and Rutile forms) in vacuum, integrated into the Enalos Cloud Platform (https://www.enaloscloud.novamechanics.com/sabydoma/ascot/). ASCOT calculates critical atomistic descriptors such as average potential energy per atom, average coordination number, common neighbour parameter (used for structural classification in simulations of crystalline phases), and hexatic order parameter (which measures how closely the local environment around a particle resembles perfect hexatic symmetry) for both core (over 4 Å from the surface) and shell (within 4 Å of the surface) regions of the NPs. These atomistic descriptors assist in predicting the most stable NP size based on lowest per atom energy and serve as inputs for developing machine learning models to predict the toxicity of these nanomaterials. ASCOT's automated backend requires minimal user input in order to construct the digital NPs: inputs needed are the material type (Ag, CuO, TiO2-Anatase, TiO2-Rutile), target diameter, a Force-Field from a pre-validated list, and the energy minimization parameters, with the tool providing a set of default values for novice users.

2.
Sci Total Environ ; 840: 156572, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35710003

RESUMO

Natural and engineered nanoparticles (NPs) entering the environment are influenced by many physicochemical processes and show various behavior in different systems (e.g., natural waters showing different characteristics). Determining the physicochemical characteristics and predicting the behavior of nanoparticles ending up in the natural aquatic environment are key aspects of their risk assessment. Here, we show that the quantitative structure-property relationship modeling method used in nanoinformatics (nano-QSPR) can be successfully applied to predict environmental fate-relevant properties (electrophoretic mobility) of TiO2, ZnO, and CeO2 nanoparticles. However, in contrast to the previous works, we postulate to use, in parallel: (i) the nanoparticles' structure descriptors (S-descriptors) and (ii) the environment descriptors (E-descriptors) as the input variables. Thus, the method should be abbreviated more precisely as nano-QSEPR ("E" stands for the "environment"). As a proof-of-the-concept, we have developed a group of models (including MLR, GA-PLS, PCR, and Meta-Consensus models) with high predictive capabilities (QEXT2 = 0.931 for the GA-PLS model), where the S-descriptors are represented by the core-shell model descriptor and the E-descriptors - by different ambient water features (including ions concentration and the ionic strength). The newly proposed nano-QSEPR modeling scheme can be efficiently used to design safe and sustainable nanomaterials.


Assuntos
Nanopartículas , Óxido de Zinco , Nanopartículas/química , Relação Quantitativa Estrutura-Atividade , Titânio/química , Óxido de Zinco/química
3.
Redox Biol ; 48: 102186, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34801863

RESUMO

When ROS production exceeds the cellular antioxidant capacity, the cell needs to eliminate the defective mitochondria responsible for excessive ROS production. It has been proposed that the removal of these defective mitochondria involves mitophagy, but the mechanism of this regulation remains unclear. Here, we demonstrate that moderate mitochondrial superoxide and hydrogen peroxide production oxidates KEAP1, thus breaking the interaction between this protein and PGAM5, leading to the inhibition of its proteasomal degradation. Accumulated PGAM5 interferes with the processing of the PINK1 in the mitochondria leading to the accumulation of PINK1 on the outer mitochondrial membrane. In turn, PINK1 promotes Parkin recruitment to mitochondria and sensitizes mitochondria for autophagic removal. We also demonstrate that inhibitors of the KEAP1-PGAM5 protein-protein interaction (including CPUY192018) mimic the effect of mitochondrial ROS and sensitize mitophagy machinery, suggesting that these inhibitors could be used as pharmacological regulators of mitophagy. Together, our results show that KEAP1/PGAM5 complex senses mitochondrially generated superoxide/hydrogen peroxide to induce mitophagy.

4.
Nanoscale ; 13(35): 14666-14678, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533558

RESUMO

Assessing the risks of nanomaterials/nanoparticles (NMs/NPs) under various environmental conditions requires a more systematic approach, including the comparison of effects across many NMs with identified different but related characters/descriptors. Hence, there is an urgent need to provide coherent (eco)toxicological datasets containing comprehensive toxicity information relating to a diverse spectra of NPs characters. These datasets are test benches for developing holistic methodologies with broader applicability. In the present study we assessed the effects of a custom design Fe-doped TiO2 NPs library, using the soil invertebrate Enchytraeus crypticus (Oligochaeta), via a 5-day pulse via aqueous exposure followed by a 21-days recovery period in soil (survival, reproduction assessment). Obviously, when testing TiO2, realistic conditions should include UV exposure. The 11 Fe-TiO2 library contains NPs of size range between 5-27 nm with varying %Fe (enabling the photoactivation of TiO2 at energy wavelengths in the visible-light range). The NPs were each described by 122 descriptors, being a mixture of measured and atomistic model descriptors. The data were explored using single and univariate statistical methods, combined with machine learning and multiscale modelling techniques. An iterative pruning process was adopted for identifying automatically the most significant descriptors. TiO2 NPs toxicity decreased when combined with UV. Notably, the short-term water exposure induced lasting biological responses even after longer-term recovery in clean exposure. The correspondence with Fe-content correlated with the band-gap hence the reduction of UV oxidative stress. The inclusion of both measured and modelled materials data benefitted the explanation of the results, when combined with machine learning.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Oligoquetos , Animais , Aprendizado de Máquina , Nanopartículas/toxicidade , Titânio/toxicidade
5.
Nanomaterials (Basel) ; 10(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322568

RESUMO

Chemoinformatics has developed efficient ways of representing chemical structures for small molecules as simple text strings, simplified molecular-input line-entry system (SMILES) and the IUPAC International Chemical Identifier (InChI), which are machine-readable. In particular, InChIs have been extended to encode formalized representations of mixtures and reactions, and work is ongoing to represent polymers and other macromolecules in this way. The next frontier is encoding the multi-component structures of nanomaterials (NMs) in a machine-readable format to enable linking of datasets for nanoinformatics and regulatory applications. A workshop organized by the H2020 research infrastructure NanoCommons and the nanoinformatics project NanoSolveIT analyzed issues involved in developing an InChI for NMs (NInChI). The layers needed to capture NM structures include but are not limited to: core composition (possibly multi-layered); surface topography; surface coatings or functionalization; doping with other chemicals; and representation of impurities. NM distributions (size, shape, composition, surface properties, etc.), types of chemical linkages connecting surface functionalization and coating molecules to the core, and various crystallographic forms exhibited by NMs also need to be considered. Six case studies were conducted to elucidate requirements for unambiguous description of NMs. The suggested NInChI layers are intended to stimulate further analysis that will lead to the first version of a "nano" extension to the InChI standard.

6.
Nanomaterials (Basel) ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066094

RESUMO

A literature curated dataset containing 24 distinct metal oxide (MexOy) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of MexOy NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by MexOy NPs. These were NP core size, hydrodynamic size, assay type, exposure dose, the energy of the MexOy conduction band (EC), the coordination number of the metal atoms on the NP surface (Avg. C.N. Me atoms surface) and the average force vector surface normal component of all metal atoms (v⟂ Me atoms surface). The significance and effect of these descriptors is discussed to demonstrate their direct correlation with cytotoxicity. The produced model has been made publicly available by the Horizon 2020 (H2020) NanoSolveIT project and will be added to the project's Integrated Approach to Testing and Assessment (IATA).

7.
Biodegradation ; 31(4-6): 249-264, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32880776

RESUMO

The inoculum biomass was collected from a pilot-scale (3 m3 process tank) nitritation-anaerobic ammonium oxidation (ANAMMOX) (deammonification moving bed biofilm (DeaMBBR)) reactor demonstrating the highest total nitrogen removal rate (TNRR) of 0.33 kg N m-3 day-1. This biomass was used for inoculating the anodic chamber of a microbial fuel cell (MFC) to investigate the capacity of DeaMBBR biomass to act as an exo-electrogenic consortia. Performance of MFCs inoculated with ANAMMOX-specific consortia collected from DeaMBBR (MFC-ANA) and another MFC-CON inoculated with a septic tank mixed anaerobic consortium as a control was investigated for electrochemical performance and wastewater treatment efficiency. These MFCs were operated for the total duration of 419 days during which regular feed was given and performance was monitored for first 30 cycles and last 30 cycles, with each cycle of 3 day duration. The MFC-ANA continuously generated bio-energy with higher volumetric power density (9.5 W m-3 and 6.0 W m-3) in comparison to MFC-CON (4.9 and 2.9 W m-3) during the first 30 and last 30 cycles of operational period, respectively. MFC-ANA also achieved 84 ± 2% and 80 ± 2% of COD removal efficiency and 89 ± 4% and 73 ± 2% of total nitrogen removal efficiency during first 30 and last 30 cycles of operational period, respectively. The improvement of nitrogen removal and power production in case of MFC-ANA over MFC-CON could be attributed to the ANAMMOX-denitrifiers populations and Trichococcus (14.92%) as denitrifying exo-electrogenic microbes (4.46%), respectively.


Assuntos
Fontes de Energia Bioelétrica , Biodegradação Ambiental , Biomassa , Reatores Biológicos , Desnitrificação , Eletricidade , Características da Família , Nitrogênio , Águas Residuárias
8.
Comput Struct Biotechnol J ; 18: 583-602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226594

RESUMO

Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.

9.
Nanoscale ; 10(46): 21985-21993, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30452031

RESUMO

In the search for novel tools to combat cancer, nanoparticles (NPs) have attracted a lot of attention. Recently, the controlled release of cancer-cell-killing metal ions from doped NPs has shown promise, but fine tuning of dissolution kinetics is required to ensure specificity and minimize undesirable toxic side-effects. Theoretical tools to help in reaching a proper understanding and finally be able to control the dissolution kinetics by NP design have not been available until now. Here, we present a novel set of true nanodescriptors to analyze the charge distribution, the effect of doping and surface coating of whole metal oxide NP structures. The polarizable model of oxygen atoms enables light to be shed on the charge distribution on the NP surface, allowing the in detail study of the factors influencing the release of metal ions from NPs. The descriptors and their capabilities are demonstrated on a Fe-doped ZnO nanoparticle system, a system with practical outlook and available experimental data.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Óxido de Zinco/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Nanopartículas Metálicas/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Adv Healthc Mater ; 6(9)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28230930

RESUMO

Cancer cells have unique but widely varying characteristics that have proven them difficult to be treated by classical therapeutics and calls for novel and selective treatment options. Nanomaterials (NMs) have been shown to display biological effects as a function of their chemical composition, and the extent and exact nature of these effects can vary between different biological environments. Here, ZnO NMs are doped with increasing levels of Fe, which allows to finely tune their dissolution rate resulting in significant differences in their biological behavior on cancer or normal cells. Based on in silico analysis, 2% Fe-doped ZnO NMs are found to be optimal to cause selective cancer cell death, which is confirmed in both cultured cells and syngeneic tumor models, where they also reduce metastasis formation. These results show that upon tuning NM chemical composition, NMs can be designed as a targeted selective anticancer therapy.


Assuntos
Ferro/química , Nanopartículas/química , Nanoestruturas/química , Óxido de Zinco/química , Animais , Linhagem Celular , Células HeLa , Humanos , Cinética , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Roedores
11.
PLoS Pathog ; 13(2): e1006168, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28182794

RESUMO

Human papillomaviruses (HPVs) are oncogenic viruses that cause numerous different cancers as well as benign lesions in the epithelia. To date, there is no effective cure for an ongoing HPV infection. Here, we describe the generation process of a platform for the development of anti-HPV drugs. This system consists of engineered full-length HPV genomes that express reporter genes for evaluation of the viral copy number in all three HPV replication stages. We demonstrate the usefulness of this system by conducting high-throughput screens to identify novel high-risk HPV-specific inhibitors. At least five of the inhibitors block the function of Tdp1 and PARP1, which have been identified as essential cellular proteins for HPV replication and promising candidates for the development of antivirals against HPV and possibly against HPV-related cancers.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Papillomavirus Humano 18/genética , Western Blotting , Linhagem Celular , Genes Reporter , Humanos , Luciferases de Renilla/genética , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Transfecção , Replicação Viral/efeitos dos fármacos
12.
Adv Exp Med Biol ; 947: 257-301, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168671

RESUMO

The development and implementation of safe-by-design strategies is key for the safe development of future generations of nanotechnology enabled products. The safety testing of the huge variety of nanomaterials that can be synthetized is unfeasible due to time and cost constraints. Computational modeling facilitates the implementation of alternative testing strategies in a time and cost effective way. The development of predictive nanotoxicology models requires the use of high quality experimental data on the structure, physicochemical properties and bioactivity of nanomaterials. The FP7 Project MODERN has developed and evaluated the main components of a computational framework for the evaluation of the environmental and health impacts of nanoparticles. This chapter describes each of the elements of the framework including aspects related to data generation, management and integration; development of nanodescriptors; establishment of nanostructure-activity relationships; identification of nanoparticle categories; hazard ranking and risk assessment.


Assuntos
Nanopartículas/química , Simulação por Computador , Humanos , Nanoestruturas/química , Nanotecnologia/métodos , Medição de Risco , Segurança
13.
Med Chem ; 12(6): 513-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26434799

RESUMO

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) is the causative agent of AIDS occurs across mucosal surfaces or by direct inoculation. OBJECTIVE: The objective of this study was to consider chemically diverse scaffold sets of HIV-1 Reverse Transcriptase Inhibitors (HIV-1 RTI) subjected to ideal oriented QSAR with large descriptor space. METHOD: We generated a four-parameter QSAR model based on 111 data points, which provided an optimum prediction of HIV-1 RTI for overall 367 experimentally measured compounds. RESULTS: The robustness of the model is demonstrated by its statistical validation (Ntraining = 111, R2 = 0.85, Q2lmo = 0.84) and by the prediction of HIV-1 inhibition activity for experimentally measured compounds. CONCLUSION: Finally, 5 novel hit compounds were designed in silico by using a virtual screening approach. The new hits met all the pharmacophore constraints and predicted pIC50 values within the binding ability of HIV-1 RT protein targets.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Inibidores da Transcriptase Reversa/química , Algoritmos , Transcriptase Reversa do HIV/química , HIV-1/enzimologia , Modelos Lineares , Modelos Moleculares
14.
Org Biomol Chem ; 13(36): 9492-503, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26256838

RESUMO

Novel, cyclic peptidomimetics were synthesized by facile acylation reactions using benzotriazole chemistry. Microbiological testing of the synthesized compounds revealed an exceptionally high activity against Candida albicans with a minimum inhibitory concentration (MIC) two orders of magnitude lower than the MIC of the antifungal reference drug amphotericin B. A strikingly high activity was also observed against three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae and Proteus vulgaris), two of which are known human pathogens. Thus the discovered chemotype is a potential polypharmacological agent. The toxicity against mammalian tumor cells was found to be low, as demonstrated in five different human cell lines (HeLa, cervical; PC-3, prostate; MCF-7, breast; HepG2, liver; and HCT-116, colon). The internal consistency of the experimental data was studied using 3D-pharmacophore and 2D-QSAR.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Peptidomiméticos/farmacologia , Antibacterianos/química , Antifúngicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Relação Quantitativa Estrutura-Atividade
15.
Curr Comput Aided Drug Des ; 10(4): 303-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479379

RESUMO

Structure-activity relationships in a data set of HPV6-E1 helicase ATPase inhibitors were investigated based on two different sets of descriptors. Statistically significant four parameter Quantitative Structure-Activity Relationships (QSAR) models were constructed and validated in both cases (R(2)=0.849; R(2) cv=0.811; F=52.20; s(2)=0.25; N=42). A Fragment based QSAR (FQSAR) approach was applied for developing a fragment-QSAR equation, which enabled the construction of virtual structures for novel ATPase inhibitors with desired or pre-defined activity.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , DNA Helicases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Papillomavirus Humano 6/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Papillomavirus Humano 6/enzimologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular
16.
Mol Inform ; 32(9-10): 793-801, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27480232

RESUMO

The article deals with a challenging attempt to model and predict "difficult" properties as long-term subchronic oral and inhalation toxicities (90 days) using nonlinear QSAR approach. This investigation is one of the first to tackle such multicomplex properties where we have employed nonlinear models based on artificial neural network for the prediction of NOAEL (no observable adverse effect level). Despite the complex nature of the NOAEL property based on in vivo rat experiments, the successful models can be used as alternative tools to non-animal tests for the initial assessment of these chronic toxicities. The model for oral subchronic toxicity is able to describe 88 %, and the inhalation model 87 % of the statistical variance. For the sake of future predictions, we have also defined in a quantitative way the applicability domain of all neural network models.

17.
Curr Comput Aided Drug Des ; 8(1): 55-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22242797

RESUMO

A novel computational technology based on fragmentation of the chemical compounds has been used for the fast and efficient prediction of activities of prospective protease inhibitors of the hepatitis C virus. This study spans over a discovery cycle from the theoretical prediction of new HCV NS3 protease inhibitors to the first cytotoxicity experimental tests of the best candidates. The measured cytotoxicity of the compounds indicated that at least two candidates would be suitable further development of drugs.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/enzimologia , Humanos , Modelos Lineares , Modelos Biológicos
18.
J Phys Chem A ; 115(15): 3475-9, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21449551

RESUMO

CODESSA Pro derivative descriptors were calculated for a data set of 426 azeotropic mixtures by the centroid approximation and the weighted-contribution-factor approximation. The two approximations produced almost identical four-descriptor QSPR models relating the structural characteristic of the individual components of azeotropes to the azeotropic boiling points. These models were supported by internal and external validations. The descriptors contributing to the QSPR models are directly related to the three components of the enthalpy (heat) of vaporization.


Assuntos
Temperatura de Transição , Destilação , Teoria Quântica , Volatilização
19.
Curr Comput Aided Drug Des ; 6(2): 79-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20402661

RESUMO

An investigation of cell-penetrating peptides (CPPs) by using combination of Artificial Neural Networks (ANN) and Principle Component Analysis (PCA) revealed that the penetration capability (penetrating/non-penetrating) of 101 examined peptides can be predicted with accuracy of 80%-100%. The inputs of the ANN are the main characteristics classifying the penetration. These molecular characteristics (descriptors) were calculated for each peptide and they provide bio-chemical insights for the criteria of penetration. Deeper analysis of the PCA results also showed clear clusterization of the peptides according to their molecular features.


Assuntos
Peptídeos Penetradores de Células/farmacocinética , Células/metabolismo , Simulação por Computador , Redes Neurais de Computação , Animais , Humanos , Análise de Componente Principal
20.
Water Res ; 44(8): 2451-60, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20153498

RESUMO

The experimental logEC50 toxicity values of 104 compounds causing bioluminescent repression of the bacterium strain Pseudomonas isolated from an industrial wastewater were studied. Using the Best Multilinear Regression method implemented in CODESSA PRO, models with up to 8 theoretical descriptors were obtained. Utilizing a rigorous descriptor selection and validation procedure a reliable QSAR model with four parameters was selected as best. The proposed model emphasizes the importance of the halogen atoms presented in each compound, the possibility of H-bond formation and the flexibility and degree of branching of the molecules. As pointed out by many researchers, the contribution of the octanol-water partition coefficient to the explanation of the toxicity effect was also found to be significant. In addition, the model currently proposed was compared to those reported earlier and its advantages were discussed in detail.


Assuntos
Esgotos/química , Poluentes Químicos da Água/toxicidade , Compostos Orgânicos/toxicidade , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...