Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920905

RESUMO

The UV-B component of sunlight damages the DNA in skin cells, which can lead to skin cancer and premature aging. Therefore, it is necessary to use creams that also contain UV-active substances. Many sunscreens contain titanium dioxide due to its capacity to absorb UV-B wavelengths. In the present study, titan dioxide was introduced in alginate and chitosan-alginate hydrogel composites that are often involved as scaffold compositions in tissue engineering applications. Alginate and chitosan were chosen due to their important role in skin regeneration and skin protection. The composites were cross-linked with calcium ions and investigated using FT-IR, Raman, and UV-Vis spectroscopy. The stability of the obtained samples under solar irradiation for skin protection and regeneration was analyzed. Then, the hydrogel composites were assayed in vitro by immersing them in simulated body fluid and exposing them to solar simulator radiation for 10 min. The samples were found to be stable under solar light, and a thin apatite layer covered the surface of the sample with the two biopolymers and titanium dioxide. The in vitro cell viability assay suggested that the anatase phase in alginate and chitosan-alginate hydrogel composites have a positive impact.

2.
Materials (Basel) ; 16(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241249

RESUMO

Orthorhombic molybdenum trioxide (α-MoO3) is well known as a photocatalyst, adsorbent, and inhibitor during methyl orange photocatalytic degradation via TiO2. Therefore, besides the latter, other active photocatalysts, such as AgBr, ZnO, BiOI, and Cu2O, were assessed via the degradation of methyl orange and phenol in the presence of α-MoO3 using UV-A- and visible-light irradiation. Even though α-MoO3 could be used as a visible-light-driven photocatalyst, our results demonstrated that its presence in the reaction medium strongly inhibits the photocatalytic activity of TiO2, BiOI, Cu2O, and ZnO, while only the activity AgBr is not affected. Therefore, α-MoO3 might be an effective and stable inhibitor for photocatalytic processes to evaluate the newly explored photocatalysts. Quenching the photocatalytic reactions can offer information about the reaction mechanism. Moreover, the absence of photocatalytic inhibition suggests that besides photocatalytic processes, parallel reactions take place.

3.
Polymers (Basel) ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111992

RESUMO

In the present study, polysaccharide-based cryogels demonstrate their potential to mimic a synthetic extracellular matrix. Alginate-based cryogel composites with different gum arabic ratios were synthesized by an external ionic cross-linking protocol, and the interaction between the anionic polysaccharides was investigated. The structural features provided by FT-IR, Raman, and MAS NMR spectra analysis indicated that a chelation mechanism is the main process linking the two biopolymers. In addition, SEM investigations revealed a porous, interconnected, and well-defined structure suitable as a scaffold in tissue engineering. The in vitro tests confirmed the bioactive character of the cryogels through the development of the apatite layer on the surface of the samples after immersion in simulated body fluid, identifying the formation of a stable phase of calcium phosphate and a small amount of calcium oxalate. Cytotoxicity tests performed on fibroblast cells demonstrated the non-toxic effect of alginate-gum arabic cryogel composites. In addition, an increase in flexibility was noted for samples with a high gum arabic content, which determines an appropriate environment to promote tissue regeneration. The newly obtained biomaterials that exhibit all these properties can be successfully involved in the regeneration of soft tissues, wound management, or controlled drug release systems.

4.
Materials (Basel) ; 15(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268885

RESUMO

Using an ideal biomaterial to treat injured bones can accelerate the healing process and simultaneously exhibit antibacterial properties; thus protecting the patient from bacterial infections. Therefore, the aim of this work was to synthesize composites containing silicate-based bioactive glasses and different types of noble metal structures (i.e., AgI pyramids, AgIAu composites, Au nanocages, Au nanocages with added AgI). Bioactive glass was used as an osteoconductive bone substitute and Ag was used for its antibacterial character, while Au was included to accelerate the formation of new bone. To investigate the synergistic effects in these composites, two syntheses were carried out in two ways: AgIAu composites were added in either one step or AgI pyramids and Au nanocages were added separately. All composites showed good in vitro bioactivity. Transformation of AgI in bioactive glasses into Ag nanoparticles and other silver species resulted in good antibacterial behavior. It was observed that the Ag nanoparticles remained in the Au nanocages, which was also beneficial in terms of antibacterial properties. The presence of Au nanoparticles contributed to the composites achieving high cell viability. The most outstanding result was obtained by the consecutive addition of noble metals into the bioactive glasses, resulting in both a high antibacterial effect and good cell viability.

5.
Nanomaterials (Basel) ; 13(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36615999

RESUMO

The widespread use of Ag3PO4 is not surprising when considering its higher photostability compared to other silver-based materials. The present work deals with the facile precipitation method of silver phosphate. The effects of four different phosphate sources (H3PO4, NaH2PO4, Na2HPO4, Na3PO4·12 H2O) and two different initial concentrations (0.1 M and 0.2 M) were investigated. As the basicity of different phosphate sources influences the purity of Ag3PO4, different products were obtained. Using H3PO4 did not lead to the formation of Ag3PO4, while applying NaH2PO4 resulted in Ag3PO4 and a low amount of pyrophosphate. The morphological and structural properties of the obtained samples were studied by X-ray diffractometry, diffuse reflectance spectroscopy, scanning electron microscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activity of the materials and the corresponding reaction kinetics were evaluated by the degradation of methyl orange (MO) under visible light. Their stability was investigated by reusability tests, photoluminescence measurements, and the recharacterization after degradation. The effect of as-deposited Ag nanoparticles was also highlighted on the photostability and the reusability of Ag3PO4. Although the deposited Ag nanoparticles suppressed the formation of holes and reduced the degradation of methyl orange, they did not reduce the performance of the photocatalyst.

6.
Mater Sci Eng C Mater Biol Appl ; 123: 112006, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812626

RESUMO

Biomaterials based on bioactive glass with gold nanoparticle composites have many applications in tissue engineering due to their tissue regeneration and angiogenesis capacities. The objectives of the study were to develop new composites using bioactive glass with gold nanospheres (BGAuSP) and gold nanocages (BGAuIND), individually introduced in alginate-pullulan (Alg-Pll) polymer, to evaluate their biocompatibility potential, and to compare the obtained results with those achieved when ß-tricalcium phosphate-hydroxyapatite (ßTCP/HA) replaced the BG. The novel composites underwent structural and morphological characterization followed by in vitro viability testing on fibroblast and osteoblast cell lines. Additionally, the biomaterials were subcutaneously implanted in Sprague Dawley rats, for in vivo biocompatibility assessment during 3 separate time frames (14, 30 and 60 days). The biological effects were evaluated by histopathology and immunohistochemistry. The physical characterization revealed the cross-linking between polymers and glasses/ceramics and demonstrated a suitable thermal stability for sterilization processes. The in vitro assays demonstrated adequate form, pore size of composites ranging from few micrometers up to 100 µm, while the self-assembled apatite layer formed after simulated body fluid immersion confirmed the composites' bioactivity. Viability assays have highlighted optimal cellular proliferation and in vitro biocompatibility for all tested composites. Furthermore, based on the in vivo subcutaneous analyses the polymer composites with BGAuNP have shown excellent biocompatibility at 14, 30 and 60 days, exhibiting marked angiogenesis while, tissue proliferation was confirmed by high number of Vimentin positive cells, in comparison with the polymer composite that contains ßTCP/HA, which induced an inflammatory response represented by a foreign body reaction. The obtained results suggest promising, innovative, and biocompatible composites with bioactive properties for future soft tissue and bone engineering endeavours.


Assuntos
Nanopartículas Metálicas , Engenharia Tecidual , Animais , Materiais Biocompatíveis/farmacologia , Biopolímeros , Cerâmica , Vidro , Ouro , Teste de Materiais , Nanopartículas Metálicas/toxicidade , Ratos , Ratos Sprague-Dawley
7.
RSC Adv ; 11(16): 9709-9720, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423471

RESUMO

Investigations regarding AgBr-based photocatalysts came to the center of attention due to their high photosensitivity. The present research focuses on the systematic investigation regarding the effect of different alkali metal cation radii and surfactants/capping agents applied during the synthesis of silver-halides. Their morpho-structural and optical properties were determined via X-ray diffractometry, diffuse reflectance spectroscopy, scanning electron microscopy, infrared spectroscopy, and contact angle measurements. The semiconductors' photocatalytic activities were investigated using methyl orange as the model contaminant under visible light irradiation. The correlation between the photocatalytic activity and the obtained optical and morpho-structural properties was analyzed using generalized linear models. Moreover, since the (photo)stability of Ag-based photoactive materials is a crucial issue, the stability of catalysts was also investigated after the degradation process. It was concluded that (i) the photoactivity of the samples could be fine-tuned using different precursors and surfactants, (ii) the as-obtained AgBr microcrystals were transformed into other Ag-containing composites during/after the degradation, and (iii) elemental bromide did not form during the degradation process. Thus, the proposed mechanisms in the literature (for the degradation of MO using AgBr) must be reconsidered.

8.
Materials (Basel) ; 12(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987035

RESUMO

Vertically aligned carbon nanotubes (VACNTs or "CNT forest") were decorated with semiconductor particles (TiO2 and ZnO) by atomic layer deposition (ALD). Both the structure and morphology of the components were systematically studied using scanning (SEM) and high resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray diffraction (XRD) methods. Characterization results revealed that the decoration was successful in the whole bulk of VACNTs. The effect of a follow-up heat treatment was also investigated and its effect on the structure was proved. It was attested that atomic layer deposition is a suitable technique for the fabrication of semiconductor/vertically aligned carbon nanotubes composites. Regarding their technological importance, we hope that semiconductor/CNT forest nanocomposites find potential application in the near future.

9.
J Nanosci Nanotechnol ; 19(1): 407-413, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30327049

RESUMO

Photocatalytic applicability of different TiO2-based nanomaterials is a current hot topic. Therefore, our interest for the present research was to elucidate the formation of primary and secondary intermediates during the phenol degradation by photocatalysis, in the presence of Au/TiO2 nanocomposites. The composites consisted of differently shaped gold nanoparticles and commercial titania (Evonik Aeroxide P25). The obtained composites and the noble metal nanoparticles' morphology was investigated by Transmission Electron Microscopy (TEM), their optical properties were explored using Diffuse Reflectance Spectroscopy (DRS), while the crystal structure was characterized by X-ray diffraction (XRD). The photocatalytic activity was investigated by photodegradation of phenol and methyl orange. In case of phenol it was shown that, the formation of degradation intermediates, was dependent on the Au nanoparticles' shape, leading to high amounts of different intermediates as follows: hydroquinone for composites with spherical Au nanoparticles, 1,2,4-trihydroxy-benzene for triangle shaped nanoparticles, and pyrocatechol for TiO2.

10.
Materials (Basel) ; 8(1): 162-180, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28787930

RESUMO

In the present work, the influence of a gold nanoparticle's shape was investigated on the commercially available Evonik Aeroxide P25. By the variation of specific synthesis parameters, three differently shaped Au nanoparticles were synthetized and deposited on the surface of the chosen commercial titania. The nanoparticles and their composites' morphological and structural details were evaluated, applying different techniques such as Diffuse Reflectance Spectroscopy (DRS), X-ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). The influence of the Au nanoparticles' shape was discussed by evaluating their photocatalytic efficiency on phenol and oxalic acid degradation and by investigating the H2 production efficacy of the selected composites. Major differences in their photocatalytic performance depending on the shape of the deposited noble metal were evidenced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...