Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 113(1): 214-227, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074434

RESUMO

PURPOSE: Our purpose was to investigate whether liver stereotactic body radiation therapy treatment planning can be harmonized across different treatment planning systems, delivery techniques, and institutions by using a specific prescription method and to minimize the knowledge gap concerning intersystem and interuser differences. We provide best practice guidelines for all used techniques. METHODS AND MATERIALS: A multiparametric specification of target dose (gross target volume [GTV]D50%, GTVD0.1cc, GTVV90%, planning target volume [PTV]V70%) with a prescription dose of GTVD50% = 3 × 20 Gy and organ-at-risk (OAR) limits were distributed with computed tomography and structure sets from 3 patients with liver metastases. Thirty-five institutions provided 132 treatment plans using different irradiation techniques. These plans were first analyzed for target and OAR doses. Four different renormalization methods were performed (PTVDmin, PTVD98%, PTVD2%, PTVDmax). The resulting 660 treatments plans were evaluated regarding target doses to study the effect of dose renormalization to different prescription methods. A relative scoring system was used for comparisons. RESULTS: GTVD50% prescription can be performed in all systems. Treatment plan harmonization was overall successful, with standard deviations for Dmax, PTVD98%, GTVD98%, and PTVDmean of 1.6, 3.3, 1.9, and 1.5 Gy, respectively. Primary analysis showed 55 major deviations from clinical goals in 132 plans, whereas in only <20% of deviations GTV/PTV dose was traded for meeting OAR limits. GTVD50% prescription produced the smallest deviation from target planning objectives and between techniques, followed by the PTVDmax, PTVD98%, PTVD2%, and PTVDmin prescription. Deviations were significant for all combinations but for the PTVDmax prescription compared with GTVD50% and PTVD98%. Based on the various dose prescription methods, all systems significantly differed from each other, whereas GTVD50% and PTVD98% prescription showed the least difference between the systems. CONCLUSIONS: This study showed the feasibility of harmonizing liver stereotactic body radiation therapy treatment plans across different treatment planning systems and delivery techniques when a sufficient set of clinical goals is given.


Assuntos
Neoplasias Hepáticas , Radiocirurgia , Radioterapia de Intensidade Modulada , Benchmarking , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
2.
Z Med Phys ; 30(2): 155-165, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31980303

RESUMO

PURPOSE: This multi-institutional study investigates whether computational verification of fluence-modulated treatment plans using independent software with its own Strahlerkopfmodel is an appropriate method for patient-related quality assurance (PRQA) in the context of various combinations of linear accelerators (linacs), treatment techniques and treatment planning systems (TPS). MATERIALS AND METHODS: The PRQA-software's (Mobius3D) recalculations of 9 institutions' treatment plans were analyzed for a horseshoe-shaped planning target volume (PTV) inside a phantom. The recomputed dose distributions were compared to a) the dose distributions as calculated by all TPS's and b) the measured dose distributions, which were acquired using the same independent measuring system for all institutions. Furthermore, dose volume histograms were examined. The penumbra deviations and mean gamma values were quantified using Verisoft (PTW). Additionally, workflow requirements for computational verification were discussed. RESULTS: Mobius3D is compatible with all examined TPSs, treatment techniques and linacs. The mean PTV dose differences (Mobius3D-TPS, <3.0%) and 3D gamma passing rates (>95.0%) led to a positive plan acceptance result in all cases. These results are similar to the outcome of the dosimetric measurements with one exception. The mean gamma values (<0.5) show a good agreement between Mobius3D and the TPS dose distributions. CONCLUSION: Using Mobius3D was proven to be an appropriate computational PRQA method for the tested combinations of linacs, treatment techniques and TPS's. The clinical use of Mobius3D has to be complemented with regular dosimetric measurements and thorough linac and TPS QA. Mobius3D's computational verification reduced measurement effort and personnel needs in comparison to dosimetric verifications.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...