Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Mhealth Uhealth ; 9(7): e26149, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328440

RESUMO

BACKGROUND: Travel to clinics for chronic wound management is burdensome to patients. Remote assessment and management of wounds using mobile and telehealth approaches can reduce this burden and improve patient outcomes. An essential step in wound documentation is the capture of wound images, but poor image quality can have a negative influence on the reliability of the assessment. To date, no study has investigated the quality of remotely acquired wound images and whether these are suitable for wound self-management and telemedical interpretation of wound status. OBJECTIVE: Our goal was to develop a mobile health (mHealth) tool for the remote self-assessment of digital ulcers (DUs) in patients with systemic sclerosis (SSc). We aimed to define and validate objective measures for assessing the image quality, evaluate whether an automated feedback feature based on real-time assessment of image quality improves the overall quality of acquired wound images, and evaluate the feasibility of deploying the mHealth tool for home-based chronic wound self-monitoring by patients with SSc. METHODS: We developed an mHealth tool composed of a wound imaging and management app, a custom color reference sticker, and a smartphone holder. We introduced 2 objective image quality parameters based on the sharpness and presence of the color checker to assess the quality of the image during acquisition and enable a quality feedback mechanism in an advanced version of the app. We randomly assigned patients with SSc and DU to the 2 device groups (basic and feedback) to self-document their DU at home over 8 weeks. The color checker detection ratio (CCDR) and color checker sharpness (CCS) were compared between the 2 groups. We evaluated the feasibility of the mHealth tool by analyzing the usability feedback from questionnaires, user behavior and timings, and the overall quality of the wound images. RESULTS: A total of 21 patients were enrolled, of which 15 patients were included in the image quality analysis. The average CCDR was 0.96 (191/199) in the feedback group and 0.86 (158/183) in the basic group. The feedback group showed significantly higher (P<.001) CCS compared to the basic group. The usability questionnaire results showed that the majority of patients were satisfied with the tool, but could benefit from disease-specific adaptations. The median assessment duration was <50 seconds in all patients, indicating the mHealth tool was efficient to use and could be integrated into the daily routine of patients. CONCLUSIONS: We developed an mHealth tool that enables patients with SSc to acquire good-quality DU images and demonstrated that it is feasible to deploy such an app in this patient group. The feedback mechanism improved the overall image quality. The introduced technical solutions consist of a further step towards reliable and trustworthy digital health for home-based self-management of wounds.


Assuntos
Aplicativos Móveis , Telemedicina , Estudos de Viabilidade , Retroalimentação , Humanos , Reprodutibilidade dos Testes
2.
Front Neurosci ; 14: 586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625053

RESUMO

BACKGROUND: Sleep is commonly assessed by recording the electroencephalogram (EEG) of the sleeping brain. As sleep assessments in a lab environment are cumbersome for both the participant and researcher, it would be highly desirable to record sleep EEG with a user-friendly and mobile device. Dry electrodes that are reusable, low-cost, and easy to apply would be an essential component of such a device. In this study, we developed a testing protocol to investigate the performance of novel flat-type dry electrodes for sleep EEG recordings in free-living conditions. METHODS: Overnight sleep EEG, electrooculogram and electromyogram of four young and healthy participants were recorded at home. Two identical ambulatory recording devices, one using novel flat-type dry electrodes, the other using self-adhesive pre-gelled electrodes, simultaneously recorded sleep EEG. Between both electrode types, we then compared the signal quality, the incidence of artifacts, the sensitivity, specificity and inter-scoring reliability (Cohen's kappa) of sleep staging, as well as the agreement of important characteristics of sleep-specific EEG microstructure features, such as slow waves (0.5-4 Hz) and sleep spindles (10-16 Hz). RESULTS: Our testing protocol comprehensively compared the two electrode types on a macro- and microstructure level of sleep. The dry and pre-gelled electrodes both had comparable signal quality and sleep staging was feasible with both electrodes. Also, slow-wave and spindle characteristics were similar. However, sweat artifacts were more prevalent in the flat-type dry electrodes. CONCLUSION: With a reliable testing protocol, the performance of dry electrodes can be compared to reference technologies and objectively assessed also in free-living conditions.

3.
J Appl Physiol (1985) ; 127(3): 847-857, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525318

RESUMO

Measuring peripheral oxygen saturation (SpO2) with pulse oximeters at the point of care is widely established. However, since SpO2 is dependent on ambient atmospheric pressure, the distribution of SpO2 values in populations living above 2000 m a.s.l. is largely unknown. Here, we propose and evaluate a computer model to predict SpO2 values for pediatric permanent residents living between 0 and 4,000 m a.s.l. Based on a sensitivity analysis of oxygen transport parameters, we created an altitude-adaptive SpO2 model that takes physiological adaptation of permanent residents into account. From this model, we derived an altitude-adaptive abnormal SpO2 threshold using patient parameters from literature. We compared the obtained model and threshold against a previously proposed threshold derived statistically from data and two empirical data sets independently recorded from Peruvian children living at altitudes up to 4,100 m a.s.l. Our model followed the trends of empirical data, with the empirical data having a narrower healthy SpO2 range below 2,000 m a.s.l. but the medians never differed more than 2.3% across all altitudes. Our threshold estimated abnormal SpO2 in only 17 out of 5,981 (0.3%) healthy recordings, whereas the statistical threshold returned 95 (1.6%) recordings outside the healthy range. The strength of our parametrized model is that it is rooted in physiology-derived equations and enables customization. Furthermore, as it provides a reference SpO2, it could assist practitioners in interpreting SpO2 values for diagnosis, prognosis, and oxygen administration at higher altitudes.NEW & NOTEWORTHY Our model describes the altitude-dependent decrease of SpO2 in healthy pediatric residents based on physiological equations and can be adapted based on measureable clinical parameters. The proposed altitude-specific abnormal SpO2 threshold might be more appropriate than rigid guidelines for administering oxygen that currently are only available for patients at sea level. We see this as a starting point to discuss and adapt oxygen administration guidelines.


Assuntos
Altitude , Modelos Biológicos , Oximetria/normas , Oxigênio/sangue , Pré-Escolar , Humanos , Lactente
4.
JMIR Mhealth Uhealth ; 6(12): e11896, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552079

RESUMO

BACKGROUND: Mobile health (mHealth) technologies have the potential to bring health care closer to people with otherwise limited access to adequate health care. However, physiological monitoring using mobile medical sensors is not yet widely used as adding biomedical sensors to mHealth projects inherently introduces new challenges. Thus far, no methodology exists to systematically evaluate these implementation challenges and identify the related risks. OBJECTIVE: This study aimed to facilitate the implementation of mHealth initiatives with mobile physiological sensing in constrained health systems by developing a methodology to systematically evaluate potential challenges and implementation risks. METHODS: We performed a quantitative analysis of physiological data obtained from a randomized household intervention trial that implemented sensor-based mHealth tools (pulse oximetry combined with a respiratory rate assessment app) to monitor health outcomes of 317 children (aged 6-36 months) that were visited weekly by 1 of 9 field workers in a rural Peruvian setting. The analysis focused on data integrity such as data completeness and signal quality. In addition, we performed a qualitative analysis of pretrial usability and semistructured posttrial interviews with a subset of app users (7 field workers and 7 health care center staff members) focusing on data integrity and reasons for loss thereof. Common themes were identified using a content analysis approach. Risk factors of each theme were detailed and then generalized and expanded into a checklist by reviewing 8 mHealth projects from the literature. An expert panel evaluated the checklist during 2 iterations until agreement between the 5 experts was achieved. RESULTS: Pulse oximetry signals were recorded in 78.36% (12,098/15,439) of subject visits where tablets were used. Signal quality decreased for 1 and increased for 7 field workers over time (1 excluded). Usability issues were addressed and the workflow was improved. Users considered the app easy and logical to use. In the qualitative analysis, we constructed a thematic map with the causes of low data integrity. We sorted them into 5 main challenge categories: environment, technology, user skills, user motivation, and subject engagement. The obtained categories were translated into detailed risk factors and presented in the form of an actionable checklist to evaluate possible implementation risks. By visually inspecting the checklist, open issues and sources for potential risks can be easily identified. CONCLUSIONS: We developed a data integrity-based methodology to assess the potential challenges and risks of sensor-based mHealth projects. Aiming at improving data integrity, implementers can focus on the evaluation of environment, technology, user skills, user motivation, and subject engagement challenges. We provide a checklist to assist mHealth implementers with a structured evaluation protocol when planning and preparing projects.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5672-5675, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441623

RESUMO

Thermal cameras enable non-contact estimation of the respiratory rate (RR). Accurate estimation of RR is highly dependent on the reliable detection of the region of interest (ROI), especially when using cameras with low pixel resolution. We present a novel approach for the automatic detection of the human nose ROI, based on facial landmark detection from an RGB camera that is fused with the thermal image after tracking. We evaluated the detection rate and spatial accuracy of the novel algorithm on recordings obtained from 16 subjects under challenging detection scenarios. Results show a high detection rate (median: 100%, 5th-95th percentile: 92%- 100%) and very good spatial accuracy with an average root mean square error of 2 pixels in the detected ROI center when compared to manual labeling. Therefore, the implementation of a multispectral camera fusion algorithm is a valid strategy to improve the reliability of non-contact RR estimation with nearable devices featuring thermal cameras.


Assuntos
Algoritmos , Taxa Respiratória , Face , Humanos , Reprodutibilidade dos Testes
6.
Sci Rep ; 7(1): 14993, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101338

RESUMO

Cerebral blood flow (CBF) is related to integrated neuronal activity of the brain whereas EEG provides a more direct measurement of transient neuronal activity. Therefore, we addressed what happens in the brain during sleep, combining CBF and EEG recordings. The dynamic relationship of CBF with slow-wave activity (SWA; EEG sleep intensity marker) corroborated vigilance state specific (i.e., wake, non-rapid eye movement (NREM) sleep stages N1-N3, wake after sleep) differences of CBF e.g. in the posterior cingulate, basal ganglia, and thalamus, indicating their role in sleep-wake regulation and/or sleep processes. These newly observed dynamic correlations of CBF with SWA - namely a temporal relationship during continuous NREM sleep in individuals - additionally implicate an impact of sleep intensity on the brain's metabolism. Furthermore, we propose that some of the aforementioned brain areas that also have been shown to be affected in disorders of consciousness might therefore contribute to the emergence of consciousness.


Assuntos
Circulação Cerebrovascular/fisiologia , Córtex Pré-Frontal/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Sono de Ondas Lentas/fisiologia , Adulto , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem
7.
Brain Topogr ; 30(6): 757-773, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28712063

RESUMO

In today's 24/7 society, sleep restriction is a common phenomenon which leads to increased levels of sleep pressure in daily life. However, the magnitude and extent of impairment of brain functioning due to increased sleep pressure is still not completely understood. Resting state network (RSN) analyses have become increasingly popular because they allow us to investigate brain activity patterns in the absence of a specific task and to identify changes under different levels of vigilance (e.g. due to increased sleep pressure). RSNs are commonly derived from BOLD fMRI signals but studies progressively also employ cerebral blood flow (CBF) signals. To investigate the impact of sleep pressure on RSNs, we examined RSNs of participants under high (19 h awake) and normal (10 h awake) sleep pressure with three imaging modalities (arterial spin labeling, BOLD, pseudo BOLD) while providing confirmation of vigilance states in most conditions. We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin labeling) are suited to derive independent component analysis based RSNs. The spatial map differences of these RSNs were rather small, suggesting a strong biological substrate underlying these networks. Interestingly, increased sleep pressure, namely longer time awake, specifically changed the functional network connectivity (FNC) between RSNs. In summary, all FNCs of the default mode network with any other network or component showed increasing effects as a function of increased 'time awake'. All other FNCs became more anti-correlated with increased 'time awake'. The sensorimotor networks were the only ones who showed a within network change of FNC, namely decreased connectivity as function of 'time awake'. These specific changes of FNC could reflect both compensatory mechanisms aiming to fight sleep as well as a first reduction of consciousness while becoming drowsy. We think that the specific changes observed in functional network connectivity could imply an impairment of information transfer between the affected RSNs.


Assuntos
Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Rede Nervosa/fisiologia , Sono/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Vigília , Adulto Jovem
8.
Sleep ; 38(7): 1093-103, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25845686

RESUMO

STUDY OBJECTIVES: Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. DESIGN: Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. SETTING: Sleep laboratory. PARTICIPANTS: Twenty healthy male subjects (age: 23.3 ± 2.1 y). MEASUREMENTS AND RESULTS: Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. CONCLUSION: Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature.


Assuntos
Idioma , Consolidação da Memória/fisiologia , Aprendizagem por Associação de Pares/fisiologia , Sono/fisiologia , Sinais (Psicologia) , Eletroencefalografia , Humanos , Masculino , Rememoração Mental/fisiologia , Polissonografia , Adulto Jovem
9.
Bioelectromagnetics ; 36(3): 169-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25690404

RESUMO

Pulse-modulated radiofrequency electromagnetic fields (RF EMF) can alter brain activity during sleep; increases of electroencephalographic (EEG) power in the sleep spindle (13.75-15.25 Hz) and delta-theta (1.25-9 Hz) frequency range have been reported. These field effects show striking inter-individual differences. However, it is still unknown whether individual subjects react in a similar way when repeatedly exposed. Thus, our study aimed to investigate inter-individual variation and intra-individual stability of field effects. To do so, we exposed 20 young male subjects twice for 30 min prior to sleep to the same amplitude modulated 900 MHz (2 Hz pulse, 20 Hz Gaussian low-pass filter and a ratio of peak-to-average of 4) RF EMF (spatial peak absorption of 2 W/kg averaged over 10 g) 2 weeks apart. The topographical analysis of EEG power during all-night non-rapid eye movement sleep revealed: (1) exposure-related increases in delta-theta frequency range in several fronto-central electrodes; and (2) no differences in spindle frequency range. We did not observe reproducible within-subject RF EMF effects on sleep spindle and delta-theta activity in the sleep EEG and it remains unclear whether a biological trait of how the subjects' brains react to RF EMF exists.


Assuntos
Eletroencefalografia/efeitos da radiação , Campos Eletromagnéticos , Exposição à Radiação , Ondas de Rádio , Sono/fisiologia , Sono/efeitos da radiação , Ondas Encefálicas/efeitos da radiação , Humanos , Masculino , Polissonografia/efeitos da radiação , Adulto Jovem
10.
Schizophr Bull ; 41(2): 522-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25074975

RESUMO

BACKGROUND: Schizophrenia is a severe mental disorder affecting approximately 1% of the worldwide population. Yet, schizophrenia-like experiences (schizotypy) are very common in the healthy population, indicating a continuum between normal mental functioning and the psychosis found in schizophrenic patients. A continuum between schizotypy and schizophrenia would be supported if they share the same neurobiological origin. Two such neurobiological markers of schizophrenia are: (1) a reduction of sleep spindles (12-15 Hz oscillations during nonrapid eye movement sleep), likely reflecting deficits in thalamo-cortical circuits and (2) increased glutamine and glutamate (Glx) levels in the thalamus. Thus, this study aimed to investigate whether sleep spindles and Glx levels are related to schizotypal personality traits in healthy subjects. METHODS: Twenty young male subjects underwent 2 all-night sleep electroencephalography recordings (128 electrodes). Sleep spindles were detected automatically. After those 2 nights, thalamic Glx levels were measured by magnetic resonance spectroscopy. Subjects completed a magical ideation scale to assess schizotypy. RESULTS: Sleep spindle density was negatively correlated with magical ideation (r = -.64, P < .01) and thalamic Glx levels (r = -.70, P < .005). No correlation was found between Glx levels in the thalamus and magical ideation (r = .12, P > .1). CONCLUSIONS: The common relationship of sleep spindle density with schizotypy and thalamic Glx levels indicates a neurobiological overlap between nonclinical schizotypy and schizophrenia. Thus, sleep spindle density and magical ideation may reflect the anatomy and efficiency of the thalamo-cortical system that shows pronounced impairment in patients with schizophrenia.


Assuntos
Ondas Encefálicas/fisiologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Transtorno da Personalidade Esquizotípica/fisiopatologia , Sono/fisiologia , Tálamo/metabolismo , Adulto , Humanos , Masculino , Adulto Jovem
11.
PLoS One ; 7(11): e49266, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145138

RESUMO

Functional near-infrared spectroscopy (fNIRS) has become an established tool to investigate brain function and is, due to its portability and resistance to electromagnetic noise, an interesting modality for brain-machine interfaces (BMIs). BMIs have been successfully realized using the decoding of movement kinematics from intra-cortical recordings in monkey and human. Recently, it has been shown that hemodynamic brain responses as measured by fMRI are modulated by the direction of hand movements. However, quantitative data on the decoding of movement direction from hemodynamic responses is still lacking and it remains unclear whether this can be achieved with fNIRS, which records signals at a lower spatial resolution but with the advantage of being portable. Here, we recorded brain activity with fNIRS above different cortical areas while subjects performed hand movements in two different directions. We found that hemodynamic signals in contralateral sensorimotor areas vary with the direction of movements, though only weakly. Using these signals, movement direction could be inferred on a single-trial basis with an accuracy of ∼65% on average across subjects. The temporal evolution of decoding accuracy resembled that of typical hemodynamic responses observed in motor experiments. Simultaneous recordings with a head tracking system showed that head movements, at least up to some extent, do not influence the decoding of fNIRS signals. Due to the low accuracy, fNIRS is not a viable alternative for BMIs utilizing decoding of movement direction. However, due to its relative resistance to head movements, it is promising for studies investigating brain activity during motor experiments.


Assuntos
Interfaces Cérebro-Computador , Mãos/fisiologia , Movimento , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Mapeamento Encefálico/métodos , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...