Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37986580

RESUMO

Quantifying the number of molecules from fluorescence microscopy measurements is an important topic in cell biology and medical research. In this work, we present a consecutive algorithm for super-resolution (stimulated emission depletion (STED)) scanning microscopy that provides molecule counts in automatically generated image segments and offers statistical guarantees in form of asymptotic confidence intervals. To this end, we first apply a multiscale scanning procedure on STED microscopy measurements of the sample to obtain a system of significant regions, each of which contains at least one molecule with prescribed uniform probability. This system of regions will typically be highly redundant and consists of rectangular building blocks. To choose an informative but non-redundant subset of more naturally shaped regions, we hybridize our system with the result of a generic segmentation algorithm. The diameter of the segments can be of the order of the resolution of the microscope. Using multiple photon coincidence measurements of the same sample in confocal mode, we are then able to estimate the brightness and number of molecules and give uniform confidence intervals on the molecule counts for each previously constructed segment. In other words, we establish a so-called molecular map with uniform error control. The performance of the algorithm is investigated on simulated and real data.

2.
Nat Commun ; 9(1): 4762, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420676

RESUMO

The near infrared (NIR) optical window between the cutoff for hemoglobin absorption at 650 nm and the onset of increased water absorption at 900 nm is an attractive, yet largely unexplored, spectral regime for diffraction-unlimited super-resolution fluorescence microscopy (nanoscopy). We developed the NIR fluorescent protein SNIFP, a bright and photostable bacteriophytochrome, and demonstrate its use as a fusion tag in live-cell microscopy and STED nanoscopy. We further demonstrate dual color red-confocal/NIR-STED imaging by co-expressing SNIFP with a conventional red fluorescent protein.


Assuntos
Proteínas de Bactérias/metabolismo , Microscopia de Fluorescência/métodos , Nanotecnologia , Fitocromo/metabolismo , Engenharia de Proteínas , Sobrevivência Celular , Células HeLa , Humanos , Raios Infravermelhos , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
3.
Nat Immunol ; 19(8): 821-827, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013143

RESUMO

The main function of T cells is to identify harmful antigens as quickly and precisely as possible. Super-resolution microscopy data have indicated that global clustering of T cell antigen receptors (TCRs) occurs before T cell activation. Such pre-activation clustering has been interpreted as representing a potential regulatory mechanism that fine tunes the T cell response. We found here that apparent TCR nanoclustering could be attributed to overcounting artifacts inherent to single-molecule-localization microscopy. Using complementary super-resolution approaches and statistical image analysis, we found no indication of global nanoclustering of TCRs on antigen-experienced CD4+ T cells under non-activating conditions. We also used extensive simulations of super-resolution images to provide quantitative limits for the degree of randomness of the TCR distribution. Together our results suggest that the distribution of TCRs on the plasma membrane is optimized for fast recognition of antigen in the first phase of T cell activation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Animais , Células Cultivadas , Senescência Celular , Simulação por Computador , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Imagens de Fantasmas , Ligação Proteica , Agregação de Receptores , Receptores de Antígenos de Linfócitos T alfa-beta/genética
4.
Proc Natl Acad Sci U S A ; 115(24): 6117-6122, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844182

RESUMO

Compared with localization schemes solely based on evaluating patterns of molecular emission, the recently introduced single-molecule localization concept called MINFLUX and the fluorescence nanoscopies derived from it require up to orders of magnitude fewer emissions to attain single-digit nanometer resolution. Here, we demonstrate that the lower number of required fluorescence photons enables MINFLUX to detect molecular movements of a few nanometers at a temporal sampling of well below 1 millisecond. Using fluorophores attached to thermally fluctuating DNA strands as model systems, we demonstrate that measurement times as short as 400 microseconds suffice to localize fluorescent molecules with ∼2-nm precision. Such performance is out of reach for popular camera-based localization by centroid calculation of emission diffraction patterns. Since theoretical limits have not been reached, our results show that emerging MINFLUX nanoscopy bears great potential for dissecting the motions of individual (macro)molecules at hitherto-unattained combinations of spatial and temporal resolution.

5.
Nat Immunol ; 19(5): 487-496, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662172

RESUMO

T cell antigen recognition requires T cell antigen receptors (TCRs) engaging MHC-embedded antigenic peptides (pMHCs) within the contact region of a T cell with its conjugated antigen-presenting cell. Despite micromolar TCR:pMHC affinities, T cells respond to even a single antigenic pMHC, and higher-order TCRs have been postulated to maintain high antigen sensitivity and trigger signaling. We interrogated the stoichiometry of TCRs and their associated CD3 subunits on the surface of living T cells through single-molecule brightness and single-molecule coincidence analysis, photon-antibunching-based fluorescence correlation spectroscopy and Förster resonance energy transfer measurements. We found exclusively monomeric TCR-CD3 complexes driving the recognition of antigenic pMHCs, which underscores the exceptional capacity of single TCR-CD3 complexes to elicit robust intracellular signaling.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno/imunologia , Complexo CD3/química , Complexo CD3/imunologia , Camundongos , Camundongos Transgênicos
6.
ACS Chem Biol ; 13(2): 475-480, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28933823

RESUMO

A 810 nm STED nanoscopy setup and an appropriate combination of two fluorescent dyes (Si-rhodamine 680SiR and carbopyronine 610CP) have been developed for near-IR live-cell super-resolution imaging. Vimentin endogenously tagged using the CRISPR/Cas9 approach with the SNAP tag, together with a noncovalent tubulin label, provided reliable and cell-to-cell reproducible dual-color confocal and STED imaging of the cytoskeleton in living cells.


Assuntos
Citoesqueleto/metabolismo , Corantes Fluorescentes/farmacologia , Microscopia de Fluorescência/métodos , Compostos de Organossilício/farmacologia , Quinolizinas/farmacologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Cor , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/efeitos da radiação , Edição de Genes , Humanos , Raios Infravermelhos , Microscopia Confocal , Compostos de Organossilício/síntese química , Compostos de Organossilício/química , Compostos de Organossilício/efeitos da radiação , Quinolizinas/síntese química , Quinolizinas/química , Quinolizinas/efeitos da radiação , Proteínas Recombinantes de Fusão/genética , Vimentina/genética
7.
Chemistry ; 23(10): 2469-2475, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27922726

RESUMO

Electronic energy transfer (EET) between chromophores is of fundamental importance for many biological processes and optoelectronic devices. However, common models fall short in fully describing the process, especially in bichromophoric model systems with a donor and acceptor connected by a rigid linker providing perpendicular geometries. Herein, we report a novel strategy for preparing bichromophores containing adamantane or 2-(2-adamantylidene)adamantane as rigid spacers, providing a fixed distance between chromophores, and their parallel or perpendicular arrangement without chromophore rotation. New fluorophores were developed and linked via spiroatoms. Bichromophores with identical (blue-blue) or different (blue-red) chromophores were synthesized, either in orthogonal or parallel geometry. These were characterized by absorption/fluorescence spectroscopy, time-resolved fluorescence anisotropy, and fluorescence antibunching measurements. Based on the Förster point-dipole approximation, EET efficiencies were estimated by using geometrical parameters from (time-dependent) density functional calculations. For bichromophores with parallel geometry, the predicted EET efficiencies were near unity and fit the measurements. In spite of estimated values around 0.4 and 0.5, 100 % efficiency was observed also for bichromophores with orthogonal geometry. The new rigid scaffolds presented here open new possibilities for the synthesis of bichormophores with well-defined parallel or perpendicular geometry.

8.
J Am Chem Soc ; 138(30): 9365-8, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27420907

RESUMO

Here we present a far-red, silicon-rhodamine-based fluorophore (SiR700) for live-cell multicolor imaging. SiR700 has excitation and emission maxima at 690 and 715 nm, respectively. SiR700-based probes for F-actin, microtubules, lysosomes, and SNAP-tag are fluorogenic, cell-permeable, and compatible with superresolution microscopy. In conjunction with probes based on the previously introduced carboxy-SiR650, SiR700-based probes permit multicolor live-cell superresolution microscopy in the far-red, thus significantly expanding our capacity for imaging living cells.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Imagem Molecular/métodos , Sobrevivência Celular , Cor , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Lisossomos/metabolismo , Rodaminas/química , Silício/química
9.
Nano Lett ; 15(9): 5912-8, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26235350

RESUMO

Heterogeneous diffusion dynamics of molecules play an important role in many cellular signaling events, such as of lipids in plasma membrane bioactivity. However, these dynamics can often only be visualized by single-molecule and super-resolution optical microscopy techniques. Using fluorescence lifetime correlation spectroscopy (FLCS, an extension of fluorescence correlation spectroscopy, FCS) on a super-resolution stimulated emission depletion (STED) microscope, we here extend previous observations of nanoscale lipid dynamics in the plasma membrane of living mammalian cells. STED-FLCS allows an improved determination of spatiotemporal heterogeneity in molecular diffusion and interaction dynamics via a novel gated detection scheme, as demonstrated by a comparison between STED-FLCS and previous conventional STED-FCS recordings on fluorescent phosphoglycerolipid and sphingolipid analogues in the plasma membrane of live mammalian cells. The STED-FLCS data indicate that biophysical and biochemical parameters such as the affinity for molecular complexes strongly change over space and time within a few seconds. Drug treatment for cholesterol depletion or actin cytoskeleton depolymerization not only results in the already previously observed decreased affinity for molecular interactions but also in a slight reduction of the spatiotemporal heterogeneity. STED-FLCS specifically demonstrates a significant improvement over previous gated STED-FCS experiments and with its improved spatial and temporal resolution is a novel tool for investigating how heterogeneities of the cellular plasma membrane may regulate biofunctionality.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Animais , Linhagem Celular , Membrana Celular/química , Difusão , Lipídeos de Membrana/análise , Simulação de Dinâmica Molecular , Ratos
10.
Nat Commun ; 6: 7977, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26269133

RESUMO

In fluorescence microscopy, the distribution of the emitting molecule number in space is usually obtained by dividing the measured fluorescence by that of a single emitter. However, the brightness of individual emitters may vary strongly in the sample or be inaccessible. Moreover, with increasing (super-) resolution, fewer molecules are found per pixel, making this approach unreliable. Here we map the distribution of molecules by exploiting the fact that a single molecule emits only a single photon at a time. Thus, by analysing the simultaneous arrival of multiple photons during confocal imaging, we can establish the number and local brightness of typically up to 20 molecules per confocal (diffraction sized) recording volume. Subsequent recording by stimulated emission depletion microscopy provides the distribution of the number of molecules with subdiffraction resolution. The method is applied to mapping the three-dimensional nanoscale organization of internalized transferrin receptors on human HEK293 cells.


Assuntos
DNA/química , Ácidos Nucleicos Imobilizados/química , Microscopia de Fluorescência/métodos , Aptâmeros de Nucleotídeos , Células HEK293 , Humanos , Microscopia Confocal , Coloração e Rotulagem
11.
Dev Cell ; 34(4): 475-83, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26256210

RESUMO

Regulated turnover of integrin receptors is essential for cell adhesion and migration. Pathways selectively regulating ß1-integrin recycling are implicated in cancer invasion and metastasis, yet proteins required for the internalization of this pro-invasive integrin remain to be identified. Here, we uncover formin-like 2 (FMNL2) as a critical regulator of ß1-integrin internalization downstream of protein kinase C (PKC). PKCα associates with and phosphorylates FMNL2 at S1072 within its Diaphanous autoregulatory region, leading to the release of formin autoinhibition. Phosphorylation of FMNL2 triggers its rapid relocation and promotes its interaction with the cytoplasmic tails of the α-integrin subunits for ß1-integrin endocytosis. FMNL2 drives ß1-integrin internalization and invasive motility in a phosphorylation-dependent manner, while a FMNL2 mutant defective in actin assembly interferes with ß1-integrin endocytosis and cancer cell invasion. Our data establish a role for FMNL2 in the regulation of ß1-integrin and provide a mechanistic understanding of the function of FMNL2 in cancer invasiveness.


Assuntos
Movimento Celular , Integrina beta1/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Citoplasma/metabolismo , Endocitose , Endossomos/metabolismo , Ativação Enzimática , Forminas , Células HEK293 , Células HeLa , Humanos , Integrina beta1/química , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Invasividade Neoplásica , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteínas/química
12.
Chemistry ; 21(38): 13344-56, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26272226

RESUMO

Far-red emitting fluorescent dyes for optical microscopy, stimulated emission depletion (STED), and ground-state depletion (GSDIM) super-resolution microscopy are presented. Fluorinated silicon-rhodamines (SiRF dyes) and phosphorylated oxazines have absorption and emission maxima at about λ≈660 and 680 nm, respectively, possess high photostability, and large fluorescence quantum yields in water. A high-yielding synthetic path to introduce three aromatic fluorine atoms and unconventional conjugation/solubilization spacers into the scaffold of a silicon-rhodamine is described. The bathochromic shift in SiRF dyes is achieved without additional fused rings or double bonds. As a result, the molecular size and molecular mass stay quite small (<600 Da). The use of the λ=800 nm STED beam instead of the commonly used one at λ=750-775 nm provides excellent imaging performance and suppresses re-excitation of SiRF and the oxazine dyes. The photophysical properties and immunofluorescence imaging performance of these new far-red emitting dyes (photobleaching, optical resolution, and switch-off behavior) are discussed in detail and compared with those of some well-established fluorophores with similar spectral properties.

13.
Nat Commun ; 5: 5412, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25410140

RESUMO

The interaction of lipids and proteins plays an important role in plasma membrane bioactivity, and much can be learned from their diffusion characteristics. Here we present the combination of super-resolution STED microscopy with scanning fluorescence correlation spectroscopy (scanning STED-FCS, sSTED-FCS) to characterize the spatial and temporal heterogeneity of lipid interactions. sSTED-FCS reveals transient molecular interaction hotspots for a fluorescent sphingolipid analogue. The interaction sites are smaller than 80 nm in diameter and lipids are transiently trapped for several milliseconds in these areas. In comparison, newly developed fluorescent phospholipid and cholesterol analogues with improved phase-partitioning properties show more homogenous diffusion, independent of the preference for liquid-ordered or disordered membrane environments. Our results do not support the presence of nanodomains based on lipid-phase separation in the basal membrane of our cultured nonstimulated cells, and show that alternative interactions are responsible for the strong local trapping of our sphingolipid analogue.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Microscopia , Fosfolipídeos/metabolismo , Potoroidae , Espectrometria de Fluorescência , Esfingolipídeos/metabolismo
14.
Nat Methods ; 11(7): 731-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24859753

RESUMO

We introduce far-red, fluorogenic probes that combine minimal cytotoxicity with excellent brightness and photostability for fluorescence imaging of actin and tubulin in living cells. Applied in stimulated emission depletion (STED) microscopy, they reveal the ninefold symmetry of the centrosome and the spatial organization of actin in the axon of cultured rat neurons with a resolution unprecedented for imaging cytoskeletal structures in living cells.


Assuntos
Actinas/química , Citoesqueleto/ultraestrutura , Corantes Fluorescentes , Microscopia Confocal/métodos , Tubulina (Proteína)/química , Animais , Axônios/química , Células Cultivadas , Eritrócitos/ultraestrutura , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Neurônios/citologia , Ratos , Rodaminas/química , Silício/química
15.
PLoS One ; 8(1): e54421, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349884

RESUMO

In a stimulated emission depletion (STED) microscope the region in which fluorescence markers can emit spontaneously shrinks with continued STED beam action after a singular excitation event. This fact has been recently used to substantially improve the effective spatial resolution in STED nanoscopy using time-gated detection, pulsed excitation and continuous wave (CW) STED beams. We present a theoretical framework and experimental data that characterize the time evolution of the effective point-spread-function of a STED microscope and illustrate the physical basis, the benefits, and the limitations of time-gated detection both for CW and pulsed STED lasers. While gating hardly improves the effective resolution in the all-pulsed modality, in the CW-STED modality gating strongly suppresses low spatial frequencies in the image. Gated CW-STED nanoscopy is in essence limited (only) by the reduction of the signal that is associated with gating. Time-gated detection also reduces/suppresses the influence of local variations of the fluorescence lifetime on STED microscopy resolution.


Assuntos
Aumento da Imagem , Lasers , Microscopia de Fluorescência/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Microscopia de Fluorescência/instrumentação
16.
Nat Methods ; 8(7): 571-3, 2011 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-21642963

RESUMO

Applying pulsed excitation together with time-gated detection improves the fluorescence on-off contrast in continuous-wave stimulated emission depletion (CW-STED) microscopy, thus revealing finer details in fixed and living cells using moderate light intensities. This method also enables super-resolution fluorescence correlation spectroscopy with CW-STED beams, as demonstrated by quantifying the dynamics of labeled lipid molecules in the plasma membrane of living cells.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Linhagem Celular , Membrana Celular/química , Luz , Lipídeos/análise , Lipídeos/química , Macropodidae , Fatores de Tempo
17.
Phys Chem Chem Phys ; 12(35): 10295-300, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20603676

RESUMO

In single-molecule fluorescence spectroscopy photon-antibunching is frequently used to prove the occurrence of single fluorophores. Furthermore, the relative frequency of coincident photon pairs was also used to determine the number of fluorophores in the diffraction limited observation volume of a confocal microscope. However, the ability to count fluorophores is so far limited to approximately 3 molecules due to saturation of the calibration curve with increasing number of fluorophores. Recently, we introduced a novel theoretical framework for counting the number of emitting molecules by analyzing photon-distributions acquired with a confocal microscope using four single-photon detectors. Here, we present the experimental realization of the proposed scheme in a confocal setup using novel multi-channel photon-counting electronics and DNA constructs that were labelled with five fluorophores. Our experimental results give a clear correlation between the number of estimated fluorophores and the number of bleaching steps for DNA probes conjugated with five ATTO647N labels with an error of approximately 20%. Moreover, we could acquire experimental data for up to 15 fluorophores indicating the simultaneous occurrence of three DNA probes. Our experiments put into perspective that the analysis of photon-distributions acquired with four detection channels is suited to count the number of fluorescently labelled molecules in larger aggregates or clusters with potential for applications in molecular and cell biology and for time-resolved analysis of multi-chromophoric compounds in material sciences.


Assuntos
Corantes Fluorescentes/metabolismo , Fótons , Animais , Sequência de Bases , Soluções Tampão , Bovinos , DNA/química , DNA/genética , DNA/metabolismo , Eletrônica , Vidro/química , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Estreptavidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...