Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685817

RESUMO

Rice ragged stunt virus (RRSV) is one of the most damaging viruses of the rice culture area in south and far-eastern Asia. To date, no genetic resistance has been identified and only expensive and non-environmentally friendly chemical treatments are deployed to fight this important disease. Non-chemical approaches based on RNA-silencing have been developed as resistance strategies against viruses. Here, we optimized classical miRNA and siRNA-based strategies to obtain efficient and durable resistance to RRSV. miRNA-based strategies are involved in producing artificial miRNA (amiR) targeting viral genomes in plants. Classically, only one amiR is produced from a single construct. We demonstrated for the first time that two amiRs targeting conserved regions of RRSV genomes could be transgenically produced in Nicotiana benthamiana and in rice for a single precursor. Transgenic rice plants producing either one or two amiR were produced. Despite efficient amiR accumulations, miRNA-based strategies with single or double amiRs failed to achieve efficient RRSV resistance in transformed rice plants. This suggests that this strategy may not be adapted to RRSV, which could rapidly evolve to counteract them. Another RNA-silencing-based method for viral resistance concerns producing several viral siRNAs targeting a viral fragment. These viral siRNAs are produced from an inverted repeat construct carrying the targeted viral fragment. Here, we optimized the inverted repeat construct using a chimeric fragment carrying conserved sequences of three different RRSV genes instead of one. Of the three selected homozygous transgenic plants, one failed to accumulate the expected siRNA. The two other ones accumulated siRNAs from either one or three fragments. A strong reduction of RRSV symptoms was observed only in transgenic plants expressing siRNAs. We consequently demonstrated, for the first time, an efficient and environmentally friendly resistance to RRSV in rice based on the siRNA-mediated strategy.

2.
Virus Genes ; 51(2): 267-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26215087

RESUMO

In Vietnam, the two main viruses that cause disease in rice are the Rice grassy stunt virus (RGSV) and the Rice ragged stunt virus (RRSV). Outbreaks of these two viruses have dramatically decreased rice production in Vietnam. Because natural resistance genes are unknown, an RNAi strategy may be an alternative method to develop resistance to RGSV and RRSV. However, this strategy will be efficient only if putative silencing suppressors encoded by the two viruses are neutralized. To identify these suppressors, we used the classical green fluorescent protein (GFP) agroinfiltration method in Nicotiana benthamiana. Then, we investigated the effects of viral candidate proteins on GFP expression and GFP siRNA accumulation and their interference with the short- or long-range signal of silencing. RGSV genes s2gp1, s5gp2, and s6gp1 and RRSV genes s5gp1, s6gp1, s9gp1, and s10gp1 were selected for viral silencing suppressor investigation according to their small molecular weight, the presence of cysteines, or the presence of a GW motif in related protein products. We confirmed that protein p6 of RRSV displays mild silencing suppressor activity and affects long-range silencing by delaying the systemic silencing signal. In addition, we identified two new silencing suppressors that displayed mild activity: p2 of RGSV and p9 of RRSV.


Assuntos
Interações Hospedeiro-Patógeno , Interferência de RNA , Reoviridae/imunologia , Reoviridae/fisiologia , Tenuivirus/imunologia , Tenuivirus/fisiologia , Proteínas Virais/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Oryza/virologia , Nicotiana/virologia , Vietnã
3.
Genome Announc ; 1(3)2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23704174

RESUMO

The nucleotide sequences of the ten genomic segments of a Vietnam isolate of southern rice blacked-dwarf virus were determined. This complete genomic sequence will help to further understand the viral etiology (origin of viral pathogen) and phylogenetic relationships among fijiviruses.

4.
Virus Genes ; 46(2): 383-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23132204

RESUMO

Rice grassy stunt virus (RGSV, Tenuivirus) recently emerged on rice in Vietnam, causing high yield losses during 2006-2009. The genetic diversity of RGSV is poorly documented. In this study, the two genes encoded by each ambisense segment RNA3 and RNA5 of RGSV isolates from six provinces of South Vietnam were sequenced. P3 and Pc3 (RNA3) have unknown function, P5 (RNA5) encodes the putative silencing suppressor, and Pc5 (RNA5) encodes the nucleocapsid protein (N). The sequences of 17 Vietnamese isolates were compared with reference isolates from North and South Philippines. The average nucleotide diversity among the isolates was low. We confirmed a higher variability of RNA3 than RNA5 and Pc3 than P3. No relationships between the genetic diversity and the geographic distribution of RGSV isolates could be ascertained, likely because of the long-distance migration of the insect vector. This data will contribute to a better understanding on the RGSV epidemiology in South Vietnam, a prerequisite for further management of the disease and rice breeding for resistance.


Assuntos
Variação Genética , Oryza/virologia , Doenças das Plantas/virologia , Tenuivirus/genética , Tenuivirus/isolamento & purificação , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Filogenia , Tenuivirus/classificação , Vietnã
5.
Virus Genes ; 36(1): 231-40, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18049886

RESUMO

Okra mosaic virus (OkMV) is a tymovirus infecting members of the family Malvaceae. Early infections in okra (Abelmoschus esculentus) lead to yield losses of 12-19.5%. Besides intensive biological characterizations of OkMV only minor molecular data were available. Therefore, we determined the complete nucleotide sequence of a Nigerian isolate of OkMV. The complete genomic RNA (gRNA) comprises 6,223 nt and its genome organization showed three major ORFs coding for a putative movement protein (MP) of M r 73.1 kDa, a large replication-associated protein (RP) of M r 202.4 kDa and a coat protein (CP) of M r 19.6 kDa. Prediction of secondary RNA structures showed three hairpin structures with internal loops in the 5'-untranslated region (UTR) and a 3'-terminal tRNA-like structure (TLS) which comprises the anticodon for valine, typical for a member of the genus Tymovirus. Phylogenetic comparisons based on the RP, MP and CP amino acid sequences showed the close relationship of OkMV not only to other completely sequenced tymoviruses like Kennedya yellow mosaic virus (KYMV), Turnip yellow mosaic virus (TYMV) and Erysimum latent virus (ErLV), but also to Calopogonium yellow vein virus (CalYVV), Clitoria yellow vein virus (CYVV) and Desmodium yellow mottle virus (DYMoV). This is the first report of a complete OkMV genome sequence from one of the various OkMV isolates originating from West Africa described so far. Additionally, the experimental host range of OkMV including several Nicotiana species was determined.


Assuntos
Fases de Leitura Aberta , RNA Viral/genética , Tymovirus/genética , Abelmoschus/virologia , África , Sequência de Aminoácidos , Sequência de Bases , Genoma Viral , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Doenças das Plantas/virologia , RNA Viral/química , Tymovirus/isolamento & purificação , Tymovirus/fisiologia , Tymovirus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...