Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Avicenna J Phytomed ; 13(3): 231-239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654998

RESUMO

Objective: Ephedra herbs are the only extant genus in its family, Ephedraceae, and order, Ephedrales. It has been prescribed in traditional medicine for improving headaches and respiratory infections. On the other hand, because the coronavirus disease 2019 (COVID-19) causes respiratory problems and COVID-19 pandemic is the most widespread outbreak that has affected humanity in the last century, the current review aims using literature search to investigate the effects of the Ephedra herbs compounds on COVID-19 to supply a reference for its clinical application in the inhibition and remedy of COVID-19. Materials and Methods: This review was performed using articles published in various databases, including Web of Science, PubMed, Scopus, and Google Scholar, without a time limit. For this paper, the following keywords were used: "Ephedra", "coronavirus disease 2019", "COVID-19", "Severe acute respiratory syndrome coronavirus 2" or "SARS CoV 2". Results: The results of this review show that the Ephedra herbs have effectiveness on COVID-19 and its compounds can bind to angiotensin-converting enzyme 2 (ACE2) with a high affinity and act as a blocker and prevent the binding of the virus. Conclusion: Some plants used in traditional medicine, including the Ephedra herbs, with their active compounds, can be considered a candidate with high potential for the control and prevention of COVID-19.

2.
J Clin Lab Anal ; 37(15-16): e24959, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37650531

RESUMO

One of the most tragic events in recent history was the COVID-19 outbreak, which has caused thousands of deaths. A variety of drugs were prescribed to improve the condition of patients, including antiparasitic, antiviral, antibiotics, and anti-inflammatory medicines. It must be understood, however, that COVID-19 is like a tip of an iceberg on the ocean, and the consequences of overuse of antibiotics are like the body of a mountain under water whose greatness has not yet been determined for humanity, and additional study is needed to understand them. History of the war between microbes and antimicrobial agents has shown that microbes are intelligent organisms that win over antimicrobial agents over time through many acquired or inherent mechanisms. The key terms containing "COVID-19," "Severe acute respiratory syndrome coronavirus-2," "SARS-CoV2," "Antibiotic Resistance," "Coronavirus," "Pandemic," "Antibiotics," and "Antimicrobial Resistance" were used for searching in PubMed, Scopus, and Google Scholar databases. The COVID-19 pandemic has resulted in an increased prescription of antibiotics. Infections caused by secondary or co-bacterial infections or beneficial bacteria in the body can be increased as a result of this amount of antibiotic prescription and exposure to antibiotics. Antibiotic resistance will likely pose a major problem in the future, especially for last resort antibiotics. In order to address the antibiotic resistance crisis, it is imperative that researchers, farmers, veterinarians, physicians, public and policymakers, pharmacists, other health and environmental professionals, and others collaborate during and beyond this pandemic.

3.
Acta Microbiol Immunol Hung ; 69(4): 314-322, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36129793

RESUMO

Escherichia coli ST131 is a pandemic clone with high antibiotic resistance, and it is a major causative agent of urinary tract infection (UTI) and bloodstream infections. This study evaluated the distribution and expression of virulence genes and genotyping of E. coli O25b/ST131 by Multi-locus variable number tandem repeat analysis (MLVA) method among UTI in patients at Tehran hospitals, Iran.A total of 107 E. coli isolates were collected from UTI patients. Polymerase chain reaction (PCR) amplification of the pabB gene was used to identify E. coli O25b/ST131 and the prevalence of sat and hlyA virulence genes was also analyzed. The microtiter method quantified biofilm formation ability in E. coli O25b/ST131. The Real-Time PCR (qRT-PCR) was performed to evaluate the expression of sat and hlyA genes. Finally, MLVA was performed for E. coli O25b/ST131 genotyping by targeting seven tandem repeats. SPSS-16 software was used for statistical analysis. Molecular study showed that 71% of isolates carried the pabB gene and were considered E. coli O25b/ST131 strains. Also, 45.8% and 17.8% of isolates carried sat and hlyA genes, respectively. The 57.9% isolates had biofilm formation ability. Expression of the studied virulence genes showed an increase in strong biofilm producing E. coli O25b/ST131 strains. A total of 76 (100%) E. coli O25b/ST131 strains were typed by the MLVA method.High prevalence of E. coli O25b/ST131 isolates in UTI patients can be a serious warning to the treatment due to the high antibiotic resistance rate, expression of virulence genes, and biofilm formation.


Assuntos
Escherichia coli , Repetições Minissatélites , Humanos , Escherichia coli/genética , Genótipo , Irã (Geográfico)/epidemiologia
4.
Ann Clin Microbiol Antimicrob ; 21(1): 35, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927655

RESUMO

BACKGROUND: Escherichia coli (E. coli) O25b/ST131 clone causes urinary tract infection (UTI) and is associated with a broad spectrum of other infections, such as intra-abdominal and soft tissue infections, that can be affecting bloodstream infections. Therefore, since O25b/ST131 has been reported in several studies from Iran, in the current study, we have investigated the molecular characteristics, typing, and biofilm formation of O25b/ST131 clone type E. coli collected from UTI specimens. METHODS: A total of 173 E. coli isolates from UTI were collected. The susceptibility to all fourth generations of cephalosporins (cefazolin, cefuroxime, ceftriaxone, cefotaxime, ceftazidime, cefepime) and ampicillin, ampicillin-sulbactam and aztreonam was determined. Class A ESBLs, class D ESBL and the presence of pabB gene screenings to detect of O25b/ST131 clone type were performed by using of PCR. Biofilm formation was compared between O25b/ST131 isolates and non-O25b/ST131 isolates. Finally, ERIC-PCR was used for typing of ESBL positive isolates. RESULTS: Ninety-four ESBL positive were detected of which 79 of them were O25b/ST131. Antimicrobial susceptibility test data showed that most antibiotics had a higher rate of resistance in isolates of the O25b/ST131 clonal type. Biofilm formation showed that there was a weak association between O25b/ST131 clone type isolates and the level of the biofilm formation. ERIC-PCR results showed that E. coli isolates were genetically diverse and classified into 14 groups. CONCLUSION: Our results demonstrated the importance and high prevalence of E. coli O25b/ST131 among UTI isolates with the ability to spread fast and disseminate antibiotic resistance genes.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Células Clonais , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Infecções Urinárias/tratamento farmacológico , beta-Lactamases/genética
5.
J Clin Lab Anal ; 36(7): e24483, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35689551

RESUMO

OBJECTIVE: This case-control study was designed to compare the composition of the predominant oral bacterial microbiome in Alzheimer's disease (AD) and control group. SUBJECT: A total of 30 adult participants (15 AD and 15 healthy individuals) were entered in this study. The composition of oral bacterial microbiome was examined by quantitative real-time polymerase chain reaction (qPCR) using bacterial 16S rDNA gene. The levels of systemic inflammatory cytokines in both groups were assessed using enzyme-linked immunosorbent assays (ELISA). RESULTS: The loads of Porphyromonas gingivalis, Fusobacterium nucleatum, and Prevotella intermedia were significantly more abundant in the AD compared to the control group (p < 0.05). Although Aggregatibacter actinomycetemcomitans and Streptococcus mutans were relatively frequent in the AD group, no significance difference was observed in their copy number between two groups. Although the concentrations of IL-1, IL-6, and TNF-α were higher in the AD group, there was a significant difference in their levels between the two groups (p < 0.05). Finally, there was a significant relationship between increased number of pathogenic bacteria in oral microbiome and higher concentration of cytokines in patient's blood. CONCLUSION: Our knowledge of oral microbiome and its exact association with AD is rather limited; our study showed a significant association between changes in oral microbiome bacteria, increased inflammatory cytokines, and AD.


Assuntos
Doença de Alzheimer , Microbiota , Boca , Adulto , Aggregatibacter actinomycetemcomitans , Doença de Alzheimer/microbiologia , Estudos de Casos e Controles , Citocinas , Humanos , Boca/microbiologia , Projetos Piloto
6.
Microb Drug Resist ; 27(11): 1513-1524, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33913748

RESUMO

Escherichia coli ST131 is one of the high-risk multidrug-resistant clones with a global distribution and the ability to persist and colonize in a variety of niches. Carbapenemase-producing E. coli ST131 strains with the ability to resist last-line antibiotics (i.e., colistin) have been recently considered a significant public health. Colistin is widely used in veterinary medicine and therefore, colistin-resistant bacteria can be transmitted from livestock to humans through food. There are several mechanisms of resistance to colistin, which include chromosomal mutations and plasmid-transmitted mcr genes. E. coli ST131 is a great model organism to investigate the emergence of superbugs. This microorganism has the ability to cause intestinal and extraintestinal infections, and its accurate identification as well as its antibiotic resistance patterns are vitally important for a successful treatment strategy. Therefore, further studies are required to understand the evolution of this resistant organism for drug design, controlling the evolution of other nascent emerging pathogens, and developing antibiotic stewardship programs. In this review, we will discuss the importance of E. coli ST131, the mechanisms of resistance to colistin as the last-resort antibiotic against resistant Gram-negative bacteria, reports from different regions regarding E. coli ST131 resistance to colistin, and the most recent therapeutic approaches against colistin-resistance bacteria.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos , beta-Lactamases/genética , beta-Lactamases/fisiologia
7.
Ann Clin Microbiol Antimicrob ; 19(1): 45, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998720

RESUMO

Multi-Drug Resistant (MDR) Pseudomonas aeruginosa is one of the most important bacterial pathogens that causes infection with a high mortality rate due to resistance to different antibiotics. This bacterium prompts extensive tissue damage with varying factors of virulence, and its biofilm production causes chronic and antibiotic-resistant infections. Therefore, due to the non-applicability of antibiotics for the destruction of P. aeruginosa biofilm, alternative approaches have been considered by researchers, and phage therapy is one of these new therapeutic solutions. Bacteriophages can be used to eradicate P. aeruginosa biofilm by destroying the extracellular matrix, increasing the permeability of antibiotics into the inner layer of biofilm, and inhibiting its formation by stopping the quorum-sensing activity. Furthermore, the combined use of bacteriophages and other compounds with anti-biofilm properties such as nanoparticles, enzymes, and natural products can be of more interest because they invade the biofilm by various mechanisms and can be more effective than the one used alone. On the other hand, the use of bacteriophages for biofilm destruction has some limitations such as limited host range, high-density biofilm, sub-populate phage resistance in biofilm, and inhibition of phage infection via quorum sensing in biofilm. Therefore, in this review, we specifically discuss the use of phage therapy for inhibition of P. aeruginosa biofilm in clinical and in vitro studies to identify different aspects of this treatment for broader use.


Assuntos
Bacteriófagos , Biofilmes , Terapia por Fagos , Pseudomonas aeruginosa/virologia , Antibacterianos/farmacologia , Terapia Combinada , Farmacorresistência Bacteriana Múltipla , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento
8.
Int J Nanomedicine ; 15: 6905-6916, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061358

RESUMO

INTRODUCTION: The extensive drug-resistant (XDR) Pseudomonas aeruginosa (P. aeruginosa) causes a range of infections with high mortality rate, which inflicts additional costs on treatment. The use of nano-biotechnology-based methods in medicine has opened a new perspective against drug-resistant bacteria. The aim of this study was to evaluate the effectiveness of the AgNO3 nanoparticles alone and conjugated with imipenem (IMI) to combat extensively drug-resistant P. aeruginosa. METHODS: Antibiotic susceptibility was carried out using disc diffusion method. Detection of different resistant genes was performed using standard polymerase chain reaction (PCR). The chemically synthesized AgNO3 particles were characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) methods. Fourier transform infrared spectroscopy (FTIR) was accomplished to confirm the binding of AgNO3 with IMI. The microdilution broth method was used to obtain minimum inhibitory concentration (MIC) of AgNO3 and IMI-conjugated AgNO3. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was carried out on L929 cell line to study the cytotoxicity of nanoparticles. The data were analyzed by Eta correlation ratio and chi-square (X 2) test. RESULTS: Analysis of the antibiotic resistance pattern showed that 12 (24%) isolates were XDR, and MIC values of IMI were between 64 and 128 µg/mL. Frequency of SHV, TEM, CTX M, IMP, VIM, OPR, SIM, SPM, GIM, NDM, VEB, PER, KPC, OXA, intI, intII, and intIII genes were 29 (58%), 26 (52%), 26 (52%), 32 (64%), 23 (46%), 43 (86%), 3 (6%), 6 (12%), 3 (6%), 4 (8%), 7 (14%), 6 (12%), 18 (36%), 4 (8%), 19 (38%), 16 (32%), and 2 (4%), respectively. The XRD, SEM, DLS, and FTIR analysis confirmed the synthesis of AgNO3 nanoparticles and their conjugation with IMI. The AgNO3 nanoparticles had antimicrobial activity, and their conjugation with IMI showed enhanced effectiveness against XDR isolates. The synthesized AgNO3 showed no cytotoxic effects. CONCLUSION: The results suggest that IMI-conjugated AgNO3 has a strong potency as a powerful antibacterial agent against XDR P. aeruginosa.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Imipenem/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Nitrato de Prata/farmacologia , Linhagem Celular , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Difusão Dinâmica da Luz , Humanos , Imipenem/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanoconjugados/química , Pseudomonas aeruginosa/genética , Nitrato de Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , beta-Lactamases/genética
9.
Infect Drug Resist ; 13: 2819-2828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848431

RESUMO

Coronavirus disease 2019 (COVID-19) is a type of viral pneumonia with an uncommon outbreak in Wuhan, China, in December 2019, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). SARS-CoV-2 is extremely contagious and has resulted in a fast pandemic of COVID-19. Currently, COVID-19 is on the rise around the world, and it poses a severe threat to public health around the world. This review provides an overview about the COVID-19 virus to increase public awareness and understanding of the virus and its consequences in terms of history, epidemiology, structure, genome, clinical symptoms, diagnosis, prevention, and treatment.

10.
Drug Des Devel Ther ; 14: 1867-1883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523333

RESUMO

Wound infection kills a large number of patients worldwide each year. Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the most important colonizing pathogens of wounds that, with various virulence factors and impaired immune system, causes extensive tissue damage and nonhealing wounds. Furthermore, the septicemia caused by these pathogens increases the mortality rate due to wound infections. Because of the prevalence of antibiotic resistance in recent years, the use of antibiotics to inhibit these pathogens has been restricted, and the topical application of antibiotics in wound infections increases antibiotic resistance. Therefore, finding a new therapeutic strategy against wound infections is so essential since these infections have a destructive effect on the patient's mental health and high medical costs. In this review, we discussed the use of phages for the prevention of multidrug-resistant (MDR) bacteria, causing wound infection and their role in wound healing in animal models and clinical trials. The results showed that phages have a high ability to inhibit different wound infections caused by MDR bacteria, heal the wound faster, have lower side effects and toxicity, destroy bacterial biofilm, and they are useful in controlling immune responses. Many studies have used animal models to evaluate the function of phages, and this study appears to have a positive impact on the use of phages in clinical practice and the development of a new therapeutic approach to control wound infections, although there are still many limitations.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Animais , Ensaios Clínicos como Assunto , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Soluções , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia
11.
Infect Drug Resist ; 13: 45-61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021319

RESUMO

Nowadays the most important problem in the treatment of bacterial infections is the appearance of MDR (multidrug-resistant), XDR (extensively drug-resistant) and PDR (pan drug-resistant) bacteria and the scarce prospects of producing new antibiotics. There is renewed interest in revisiting the use of bacteriophage to treat bacterial infections. The practice of phage therapy, the application of phages to treat bacterial infections, has been around for approximately a century. Phage therapy relies on using lytic bacteriophages and purified phage lytic proteins for treatment and lysis of bacteria at the site of infection. Current research indicates that phage therapy has the potential to be used as an alternative to antibiotic treatments. It is noteworthy that, whether phages are used on their own or combined with antibiotics, phages are still a promising agent to replace antibiotics. So, this review focuses on an understanding of challenges of MDR, XDR, and PDR bacteria and phages mechanism for treating bacterial infections and the most recent studies on potential phages, cocktails of phages, and enzymes of lytic phages in fighting these resistant bacteria.

12.
Infect Drug Resist ; 12: 2223-2235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440064

RESUMO

BACKGROUND: P. aeruginosa is considered as one of the most important pathogens, and high antibiotic resistance to P. aeruginosa has become an alarming concern. This study attempts to further improve curcumin solubility and stability by producing the involved nanoparticle and investigate the effect of this nanoparticle on those virulence genes of P. aeruginosa in pathogenicity and biofilm formation. METHODS: In this study, the curcumin nanoparticles were synthesized and characterized, and the antibacterial and antibiofilm effects of Nano-curcumin and curcumin were investigated by microdilution broth and microtiter plate, respectively. In addition, cytotoxic effect of Nano-curcumin on human epithelial cell lines (A549) was determined. The effects of Nano-curcumin on P. aeruginosa virulence genes, mexD, mexB, and mexT (efflux pumps), lecA (adhesion), nfxB (negative regulator of MexCD-OprJ), and rsmZ (biofilm formation) were determined using real-time quantitative PCR. RESULTS: Synthesized Nano-curcumins were soluble in water, which inhibited the growth of multidrug-resistant (MDR) P. aeruginosa at 128 µg/mL, whereas it was inhibited at 256 µg/mL for soluble curcumin in DMSO. Sub-inhibitory concentrations of Nano-curcumin reduced biofilm formation and, at 64 µg/mL, disrupted 58% of the established bacterial biofilms. In addition, curcumin nanoparticle downregulated the transcription of virulence genes except nfxB and exerted no cytotoxic effect on human epithelial cell lines (A549). CONCLUSIONS: Results suggest that Nano-curcumin could be potentially used to reduce P. aeruginosa virulence and biofilm. However, in vivo studies with respect to an animal model are necessary to validate these results.

13.
Folia Microbiol (Praha) ; 64(1): 55-62, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30003527

RESUMO

Dissemination of carbapenemase-producing Klebsiella pneumoniae along with 16S rRNA methyltransferase (16S-RMTase) has been caused as a great concern for healthcare settings. The aim of this study was to investigate the prevalence of resistance genes among K. pneumoniae isolates. During October 2015 to February 2016, 30 non-duplicative K. pneumoniae strains were isolated from clinical specimens in a burn center in Kerman, Iran. Antibiotic susceptibility tests of isolates, carbapenemase, extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamase-producing isolates were determined by phenotypic methods. The beta-lactamase, oqxA/B efflux pumps, qnr A, B, S, 16S-RMTase (rmt A, B, and C), and mcr-1 resistance genes were determined by PCR. Enterobacterial repetitive intergenic consensus (ERIC)-PCR was used for molecular typing. According to our findings, tigecycline has been shown the most active agent against K. pneumoniae isolates. Antibiotic resistance genes, blaTEM-1, blaSHV-12, blaCTX-M-15, blaCTX-M-2, blaNDM-1, blaFOX, blaMOX, blaEBC, blaACC, blaCIT, rmtC, qnrB, qnrS, oqxA, and oqxB, were detected in 11 (36.7%), 13 (43.3%), 11 (36.6%), 5 (16.6%), 9 (30%), 1 (3.3%), 1 (3.3%), 1 (3.3%), 1 (3.3%), 2 (6.7%), 1 (3.3%), 9 (30%), 2 (6.7%), 18 (60%), and 13 (43.3%) of isolates, respectively. The blaNDM-1 with rmtC was simultaneously observed in one isolate. ERIC-PCR results revealed 25 distinct patterns in eight clusters (A-H) and five singletons. This study highlights the high prevalence of blaNDM and emergence of rmtC among carbapenem-resistant K. pneumoniae. The resistance genes are often co-located on the conjugative plasmids, so it might be the reason of the rapid spread of them. The prevalence of multidrug-resistant K. pneumoniae isolates limits the available treatment options and presents tremendous challenges to public health.


Assuntos
Unidades de Queimados , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Farmacorresistência Bacteriana/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Humanos , Sequências Repetitivas Dispersas/genética , Irã (Geográfico) , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Metiltransferases/genética , Testes de Sensibilidade Microbiana , Tipagem Molecular , Plasmídeos/genética , beta-Lactamases/genética
14.
Jundishapur J Microbiol ; 9(6): e33529, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27635212

RESUMO

BACKGROUND: Enteroinvasive Escherichia coli (EIEC) isolates cause dysentery in humans. Several virulence factors associated with EIEC pathogenesis have been characterized. Multilocus variable-number tandem-repeat analysis (MLVA) is a PCR-based method that has been used for genotyping bacterial pathogens. OBJECTIVES: The aim of this study was to investigate the distribution of virulence factor genes in EIEC isolates from patients with diarrhea in Kerman, Iran, as well as the genetic relationships between these isolates. PATIENTS AND METHODS: A total of 620 diarrheic stool samples were collected from patients attending two hospitals in Kerman from June 2013 to August 2014. All isolates were confirmed as EIEC by PCR for the ipaH gene. The EIEC isolates were evaluated by PCR for the presence of nine virulence genes (ial, set1A, sen, virF, invE, sat, sigA, pic, and sepA). MLVA was performed for all EIEC isolates. RESULTS: A total of 11 EIEC isolates were identified, and all were positive for the ial gene. The invE and virF genes were observed in 81.8% of the isolates, while sen, sigA, and pic were detected in 72.7%, 63.6%, and 27.3% of the isolates, respectively. None of the isolates were positive for the sat, set, and sepA genes. Using MLVA, the 11 total isolates were divided into five types. CONCLUSIONS: By studying the profiles of virulence genes and MLVA, it can be concluded that EIEC isolates do not have high heterogeneity and are derived from a limited number of clones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...