Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(7): e202300896, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38265931

RESUMO

Chlorinated organic compounds are prominently used for industrial production, but their vapors and emission byproducts can cause detrimental effects to human health and the environment. To accurately quantify organochlorine compounds, the absolute photoionization cross section of tetrachloroethylene, chlorobenzene, 1,2-dichlorobenzene, and chloroacetone are measured using multiplexed synchrotron photoionization mass spectrometry at the Advanced Light Source at Lawrence Berkeley National Laboratory. These measurements allow for the estimation of the C-Cl photoionization cross section, increasing quantification accuracy of chlorinated emissions for kinetic modeling and pollutant mitigation. CBS-QB3 calculations of adiabatic ionization energies and thermochemical appearance energies are also presented and agree well with the experimental results.

2.
Chemphyschem ; 25(6): e202300891, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265929

RESUMO

The absolute photoionization cross section of the monoterpenoid, alpha-pinene (AP), is presented together with the relative photoionization cross sections of its dissociative fragments for the first time. Experiments are performed via multiplexed vacuum ultraviolet (VUV) synchrotron photoionization (PI) mass spectrometry in the 8.0-11.0 eV energy range. Experimental work is conducted at the Advanced Light Source of the Lawrence Berkeley National Laboratory. Dissociative fragments were identified at m/z 121, 94, 93, 92, and 80. The photoionization cross section for the parent mass at 11.0 eV was determined to be 17±4 Mb with a total ionization cross section of 92±23 Mb at the same photon energy. Experimental appearance energies of dissociative ionization fragments and potential dissociative ionization pathways calculated at the G4 level of theory are presented as well.

3.
J Phys Chem A ; 127(43): 8994-9002, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870411

RESUMO

Methyl-ethyl-substituted Criegee intermediate (MECI) is a four-carbon carbonyl oxide that is formed in the ozonolysis of some asymmetric alkenes. MECI is structurally similar to the isoprene-derived methyl vinyl ketone oxide (MVK-oxide) but lacks resonance stabilization, making it a promising candidate to help us unravel the effects of size, structure, and resonance stabilization that influence the reactivity of atmospherically important, highly functionalized Criegee intermediates. We present experimental and theoretical results from the first bimolecular study of MECI in its reaction with SO2, a reaction that shows significant sensitivity to the Criegee intermediate structure. Using multiplexed photoionization mass spectrometry, we obtain a rate coefficient of (1.3 ± 0.3) × 10-10 cm3 s-1 (95% confidence limits, 298 K, 10 Torr) and demonstrate the formation of SO3 under our experimental conditions. Through high-level theory, we explore the effect of Criegee intermediate structure on the minimum energy pathways for their reactions with SO2 and obtain modified Arrhenius fits to our predictions for the reaction of both syn and anti conformers of MECI with SO2 (ksyn = 4.42 × 1011 T-7.80exp(-1401/T) cm3 s-1 and kanti = 1.26 × 1011 T-7.55exp(-1397/T) cm3 s-1). Our experimental and theoretical rate coefficients (which are in reasonable agreement at 298 K) show that the reaction of MECI with SO2 is significantly faster than MVK-oxide + SO2, demonstrating the substantial effect of resonance stabilization on Criegee intermediate reactivity.

4.
J Am Chem Soc ; 145(35): 19405-19420, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37623926

RESUMO

Alkene ozonolysis generates short-lived Criegee intermediates that are a significant source of hydroxyl (OH) radicals. This study demonstrates that roaming of the separating OH radicals can yield alternate hydroxycarbonyl products, thereby reducing the OH yield. Specifically, hydroxybutanone has been detected as a stable product arising from roaming in the unimolecular decay of the methyl-ethyl-substituted Criegee intermediate (MECI) under thermal flow cell conditions. The dynamical features of this novel multistage dissociation plus a roaming unimolecular decay process have also been examined with ab initio kinetics calculations. Experimentally, hydroxybutanone isomers are distinguished from the isomeric MECI by their higher ionization threshold and distinctive photoionization spectra. Moreover, the exponential rise of the hydroxybutanone kinetic time profile matches that for the unimolecular decay of MECI. A weaker methyl vinyl ketone (MVK) photoionization signal is also attributed to OH roaming. Complementary multireference electronic structure calculations have been utilized to map the unimolecular decay pathways for MECI, starting with 1,4 H atom transfer from a methyl or methylene group to the terminal oxygen, followed by roaming of the separating OH and butanonyl radicals in the long-range region of the potential. Roaming via reorientation and the addition of OH to the vinyl group of butanonyl is shown to yield hydroxybutanone, and subsequent C-O elongation and H-transfer can lead to MVK. A comprehensive theoretical kinetic analysis has been conducted to evaluate rate constants and branching yields (ca. 10-11%) for thermal unimolecular decay of MECI to conventional and roaming products under laboratory and atmospheric conditions, consistent with the estimated experimental yield (ca. 7%).

5.
J Phys Chem A ; 127(11): 2577-2590, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36905386

RESUMO

The mechanism for hydrocarbon ring growth in sooting environments is still the subject of considerable debate. The reaction of phenyl radical (C6H5) with propargyl radical (H2CCCH) provides an important prototype for radical-radical ring-growth pathways. We studied this reaction experimentally over the temperature range of 300-1000 K and pressure range of 4-10 Torr using time-resolved multiplexed photoionization mass spectrometry. We detect both the C9H8 and C9H7 + H product channels and report experimental isomer-resolved product branching fractions for the C9H8 product. We compare these experiments to theoretical kinetics predictions from a recently published study augmented by new calculations. These ab initio transition state theory-based master equation calculations employ high-quality potential energy surfaces, conventional transition state theory for the tight transition states, and direct CASPT2-based variable reaction coordinate transition state theory (VRC-TST) for the barrierless channels. At 300 K only the direct adducts from radical-radical addition are observed, with good agreement between experimental and theoretical branching fractions, supporting the VRC-TST calculations of the barrierless entrance channel. As the temperature is increased to 1000 K we observe two additional isomers, including indene, a two-ring polycyclic aromatic hydrocarbon, and a small amount of bimolecular products C9H7 + H. Our calculated branching fractions for the phenyl + propargyl reaction predict significantly less indene than observed experimentally. We present further calculations and experimental evidence that the most likely cause of this discrepancy is the contribution of H atom reactions, both H + indenyl (C9H7) recombination to indene and H-assisted isomerization that converts less stable C9H8 isomers into indene. Especially at low pressures typical of laboratory investigations, H-atom-assisted isomerization needs to be considered. Regardless, the experimental observation of indene demonstrates that the title reaction leads, either directly or indirectly, to the formation of the second ring in polycyclic aromatic hydrocarbons.

6.
J Phys Chem A ; 126(50): 9497-9509, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36480708

RESUMO

Dimethyl ether (DME) oxidation is a model chemical system with a small number of prototypical reaction intermediates that also has practical importance for low-carbon transportation. Although it has been studied experimentally and theoretically, ambiguity remains in the relative importance of competing DME oxidation pathways in the low-temperature autoignition regime. To focus on the primary reactions in DME autoignition, we measured the time-resolved concentration of five intermediates, CH3OCH2OO (ROO), OOCH2OCH2OOH (OOQOOH), HOOCH2OCHO (hydroperoxymethyl formate, HPMF), CH2O, and CH3OCHO (methyl formate, MF), from photolytically initiated experiments. We performed these studies at P = 10 bar and T = 450-575 K, using a high-pressure photolysis reactor coupled to a time-of-flight mass spectrometer with tunable vacuum-ultraviolet synchrotron ionization at the Advanced Light Source. Our measurements reveal that the timescale of ROO decay and product formation is much shorter than predicted by current DME combustion models. The models also strongly underpredict the observed yields of CH2O and MF and do not capture the temperature dependence of OOQOOH and HPMF yields. Adding the ROO + OH → RO + HO2 reaction to the chemical mechanism (with a rate coefficient approximated from similar reactions) improves the prediction of MF. Increasing the rate coefficients of ROO ↔ QOOH and QOOH + O2 ↔ OOQOOH reactions brings the model predictions closer to experimental observations for OOQOOH and HPMF, while increasing the rate coefficient for the QOOH → 2CH2O + OH reaction is needed to improve the predictions of formaldehyde. To aid future quantification of DME oxidation intermediates by photoionization mass spectrometry, we report experimentally determined ionization cross-sections for ROO, OOQOOH, and HPMF.

9.
Angew Chem Int Ed Engl ; 61(42): e202209168, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895936

RESUMO

A crucial chain-branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain-branching, such as "Korcek" dissociation of γ-KHP to a carbonyl and an acid. Here we characterize the formation of a γ-KHP and its decomposition to formic acid+acetone products from observations of n-butane oxidation in two complementary experiments. In jet-stirred reactor measurements, KHP is observed above 590 K. The KHP concentration decreases with increasing temperature, whereas formic acid and acetone products increase. Observation of characteristic isotopologs acetone-d3 and formic acid-d0 in the oxidation of CH3 CD2 CD2 CH3 is consistent with a Korcek mechanism. In laser-initiated oxidation experiments of n-butane, formic acid and acetone are produced on the timescale of KHP removal. Modelling the time-resolved production of formic acid provides an estimated upper limit of 2 s-1 for the rate coefficient of KHP decomposition to formic acid+acetone.

10.
J Phys Chem A ; 126(5): 710-719, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34939803

RESUMO

The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron-multiplexed photoionization mass spectrometry experiments (298 K and 4 Torr) and high-level theory [CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction], we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethylamine (DMA). The experimental data support the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-vacuum ultraviolet photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. The rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ∼34,000, which is attributed to submerged barrier (syn) versus barrierless (anti) mechanisms for energetically downhill reactions.

11.
Angew Chem Int Ed Engl ; 60(52): 27230-27235, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34605134

RESUMO

Rapid molecular-weight growth of hydrocarbons occurs in flames, in industrial synthesis, and potentially in cold astrochemical environments. A variety of high- and low-temperature chemical mechanisms have been proposed and confirmed, but more facile pathways may be needed to explain observations. We provide laboratory confirmation in a controlled pyrolysis environment of a recently proposed mechanism, radical-radical chain reactions of resonance-stabilized species. The recombination reaction of phenyl (c-C6 H5 ) and benzyl (c-C6 H5 CH2 ) radicals produces both diphenylmethane and diphenylmethyl radicals, the concentration of the latter increasing with rising temperature. A second phenyl addition to the product radical forms both triphenylmethane and triphenylmethyl radicals, confirming the propagation of radical-radical chain reactions under the experimental conditions of high temperature (1100-1600 K) and low pressure (ca. 3 kPa). Similar chain reactions may contribute to particle growth in flames, the interstellar medium, and industrial reactors.

12.
J Phys Chem A ; 125(36): 7920-7928, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34468152

RESUMO

The absolute photoionization cross section of vinyl alcohol was determined by multiplexed photoionization mass spectrometry of the Norrish type II photodissociation of butanal at 308 nm. The measured cross sections at 10.005 and 10.205 eV are 7.5 ± 1.9 and 8.1 ± 1.9 MB, respectively. A higher signal-to-noise ratio photoionization spectrum of vinyl alcohol was recorded via the pyrolysis of 2-chloroethanol and scaled to the absolute cross sections measured using the Norrish type II method. From a comparison of our spectrum with previously reported photoelectron spectra we conclude that vinyl alcohol is mainly ionized by direct ionization in the energy range of 9-9.6 eV, whereas autoionization is responsible for the steady rise in the photoionization spectrum above the end of the Franck-Condon envelope at 9.9 eV.

13.
Phys Chem Chem Phys ; 23(27): 14913-14924, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223848

RESUMO

Gas-phase reactions of the o-methylphenyl (o-CH3C6H4) radical with the C3H4 isomers allene (H2C[double bond, length as m-dash]C[double bond, length as m-dash]CH2) and propyne (HC[triple bond, length as m-dash]C-CH3) are studied at 600 K and 4 Torr (533 Pa) using VUV synchrotron photoionisation mass spectrometry, quantum chemical calculations and RRKM modelling. Two major dissociation product ions arise following C3H4 addition: m/z 116 (CH3 loss) and 130 (H loss). These products correspond to small polycyclic aromatic hydrocarbons (PAHs). The m/z 116 signal for both reactions is conclusively assigned to indene (C9H8) and is the dominant product for the propyne reaction. Signal at m/z 130 for the propyne case is attributed to isomers of bicyclic methylindene (C10H10) + H, which contains a newly-formed methylated five-membered ring. The m/z 130 signal for allene, however, is dominated by the 1,2-dihydronaphthalene isomer arising from a newly created six-membered ring. Our results show that new ring formation from C3H4 addition to the methylphenyl radical requires an ortho-CH3 group - similar to o-methylphenyl radical oxidation. These reactions characteristically lead to bicyclic aromatic products, but the structure of the C3H4 co-reactant dictates the structure of the PAH product, with allene preferentially leading to the formation of two six-membered ring bicyclics and propyne resulting in the formation of six and five-membered bicyclic structures.

14.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065491

RESUMO

Methacrolein oxide (MACR-oxide) is a four-carbon, resonance-stabilized Criegee intermediate produced from isoprene ozonolysis, yet its reactivity is not well understood. This study identifies the functionalized hydroperoxide species, 1-hydroperoxy-2-methylallyl formate (HPMAF), generated from the reaction of MACR-oxide with formic acid using multiplexed photoionization mass spectrometry (MPIMS, 298 K = 25 °C, 10 torr = 13.3 hPa). Electronic structure calculations indicate the reaction proceeds via an energetically favorable 1,4-addition mechanism. The formation of HPMAF is observed by the rapid appearance of a fragment ion at m/z 99, consistent with the proposed mechanism and characteristic loss of HO2 upon photoionization of functional hydroperoxides. The identification of HPMAF is confirmed by comparison of the appearance energy of the fragment ion with theoretical predictions of its photoionization threshold. The results are compared to analogous studies on the reaction of formic acid with methyl vinyl ketone oxide (MVK-oxide), the other four-carbon Criegee intermediate in isoprene ozonolysis.

15.
J Phys Chem A ; 125(18): 3874-3884, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33929204

RESUMO

We have used 308 nm photolysis of acetaldehyde to measure a photoionization spectrum of the formyl (HCO) radical between 8 and 11.5 eV using an 11 meV FWHM photoionization energy resolution. We have confirmed that the formyl radical is the carrier of the spectrum by generating an identical spectrum of the HCO product in the Cl + H2CO reaction. The spectrum of HCO and its deuterated isotopologue (DCO) have several resolved autoionizing resonances above the Franck-Condon envelope, which we assign to autoionization after initial excitation into neutral 3sσ and 3p Rydberg states converging to the first triplet excited state of HCO+(ã 3A'). The quantum defects for these states are δ3sσ = 1.06 ± 0.02 and δ3p = 0.821 ± 0.019. We report absolute photoionization cross-section measurements of σHCOPI(9.907 eV) = 4.5 ± 0.9 Mb, σHCOPI(10.007 eV) = 4.8 ± 1.0 Mb, σHCOPI(10.107 eV) = 6.0 ± 1.2 Mb, σHCOPI(10.107 eV) = 5.7 ± 1.2 Mb, and σHCOPI(10.304 eV) = 10.6 ± 2.2 Mb relative to the photoionization cross section of the methyl radical. The absolute cross-section measurements are a factor of ∼1.5 larger than those determined in past studies, although the presence of strong autoionizing features supports a dependence on photoionization energy resolution. We propose that the semiempirical model of Xu and Pratt for estimation of free radical photoionization cross sections is more accurate when applied with a reference species containing the same atoms as the free radical rather than isoelectronic species with different atoms.

16.
Phys Chem Chem Phys ; 22(46): 26796-26805, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33211784

RESUMO

Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2C[double bond, length as m-dash]O+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.

17.
Proc Natl Acad Sci U S A ; 117(18): 9733-9740, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321826

RESUMO

Isoprene has the highest emission into Earth's atmosphere of any nonmethane hydrocarbon. Atmospheric processing of alkenes, including isoprene, via ozonolysis leads to the formation of zwitterionic reactive intermediates, known as Criegee intermediates (CIs). Direct studies have revealed that reactions involving simple CIs can significantly impact the tropospheric oxidizing capacity, enhance particulate formation, and degrade local air quality. Methyl vinyl ketone oxide (MVK-oxide) is a four-carbon, asymmetric, resonance-stabilized CI, produced with 21 to 23% yield from isoprene ozonolysis, yet its reactivity has not been directly studied. We present direct kinetic measurements of MVK-oxide reactions with key atmospheric species using absorption spectroscopy. Direct UV-Vis absorption spectra from two independent flow cell experiments overlap with the molecular beam UV-Vis-depletion spectra reported recently [M. F. Vansco, B. Marchetti, M. I. Lester, J. Chem. Phys. 149, 44309 (2018)] but suggest different conformer distributions under jet-cooled and thermal conditions. Comparison of the experimental lifetime herein with theory indicates only the syn-conformers are observed; anti-conformers are calculated to be removed much more rapidly via unimolecular decay. We observe experimentally and predict theoretically fast reaction of syn-MVK-oxide with SO2 and formic acid, similar to smaller alkyl-substituted CIs, and by contrast, slow removal in the presence of water. We determine products through complementary multiplexed photoionization mass spectrometry, observing SO3 and identifying organic hydroperoxide formation from reaction with SO2 and formic acid, respectively. The tropospheric implications of these reactions are evaluated using a global chemistry and transport model.

18.
J Phys Chem A ; 124(18): 3542-3554, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255634

RESUMO

Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth's atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form five-membered cyclic peroxides, known as dioxoles. This study reports the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methylvinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that were identified in this work. The carbonyl products were detected under thermal conditions (298 K, 10 Torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%), and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction with O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical coproducts.

19.
Phys Chem Chem Phys ; 21(32): 17939-17949, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31384867

RESUMO

Product detection studies of the gas-phase oxidation of o-methylphenyl radicals and m-methylphenyl radicals are reported at ambient temperature (ca. 298 K) and 4 Torr (533.3 Pa) using VUV synchrotron photoionisation mass spectrometry. It is shown that cyclopentadienone (c-C5H4[double bond, length as m-dash]O) + CH3CO and o-quinone methide (o-CH2[double bond, length as m-dash]C6H4[double bond, length as m-dash]O) + OH are unique product pathways to the o-methylphenyl + O2 reaction due to mechanisms requiring the CH3 group to be adjacent to the phenyl radical site. Common product pathways include methylphenoxy radical + O(3P) and isomers of methylcyclopentadienone (CH3C5H4[double bond, length as m-dash]O) + HCO. G3X-K quantum chemical calculations are deployed to rationalise experimental results for o-methylphenyl and m-methylphenyl radical oxidation. The o-quinone methide formation mechanism from o-methylphenyl + O2 is analogous to the formation of o-benzoquinone from o-hydroxyphenyl + O2 where, after O2 addition, the ortho-substituent in the phenylperoxyl intermediate undergoes a 1,5-H shift and eliminates OH. Other reaction products, including methylcyclopentadienone species and methylphenyoxy radicals, are rationalised by applying known phenyl oxidation mechanisms. Transition state bifurcations are present in both radical systems and have exclusive end products (with different molecular mass). Compared to previous o-hydroxyphenyl and charged-tagged methylphenyl radical oxidation studies, there are significantly more products owing to the activation in this radical system and the competitiveness of rate limiting pathways.

20.
J Phys Chem A ; 123(17): 3634-3646, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30865470

RESUMO

Photolytically initiated oxidation experiments were conducted on cyclohexane and tetrahydropyran using multiplexed photoionization mass spectrometry to assess the impact of the ether functional group in the latter species on reaction mechanisms relevant to autoignition. Pseudo-first-order conditions, with [O2]0:[R•]0 > 2000, were used to ensure that R• + O2 → products were the dominant reactions. Quasi-continuous, tunable vacuum ultraviolet light from a synchrotron was employed over the range 8.0-11.0 eV to measure photoionization spectra of the products at two pressures (10 and 1520 Torr) and three temperatures (500, 600, and 700 K). Photoionization spectra of ketohydroperoxides were measured in both species and were qualitatively identical, within the limit of experimental noise, to those of analogous species formed in n-butane oxidation. However, differences were noted in the temperature dependence of ketohydroperoxide formation between the two species. Whereas the yield from cyclohexane is evident up to 700 K, ketohydroperoxides in tetrahydropyran were not detected above 650 K. The difference indicates that reaction mechanisms change due to the ether group, likely affecting the requisite •QOOH + O2 addition step. Branching fractions of nine species from tetrahydropyran were quantified with the objective of determining the role of ring-opening reactions in diminishing ketohydroperoxide. The results indicate that products formed from unimolecular decomposition of R• and •QOOH radicals via concerted C-C and C-O ß-scission are pronounced in tetrahydropyran and are insignificant in cyclohexane oxidation. The main conclusion drawn is that, under the conditions herein, ring-opening pathways reduce the already low steady-state concentration of •QOOH, which in the case of tetrahydropyran prevents •QOOH + O2 reactions necessary for ketohydroperoxide formation. Carbon balance calculations reveal that products from ring opening of both R• and •QOOH, at 700 K, account for >70% at 10 Torr and >55% at 1520 Torr. Three pathways are confirmed to contribute to the depletion of •QOOH in tetrahydropyran including (i) γ-•QOOH → pentanedial + •OH, (ii) γ-•QOOH → vinyl formate + ethene + •OH, and (iii) γ-•QOOH → 3-butenal + formaldehyde + •OH. Analogous mechanisms in cyclohexane oxidation leading to similar intermediates are compared and, on the basis of mass spectral results, confirm that no such ring-opening reactions occur. The implication from the comparison to cyclohexane is that the ether group in tetrahydropyran increases the propensity for ring-opening reactions and inhibits the formation of ketohydroperoxide isomers that precede chain-branching. On the contrary, the absence of such reactions in cyclohexane enables ketohydroperoxide formation up to 700 K and perhaps higher temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...