Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(6): 101977, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35469920

RESUMO

The posttranslational regulation of the neuronal proteome is critical for brain homeostasis but becomes dysregulated in the aged or diseased brain, in which abnormal posttranslational modifications (PTMs) are frequently observed. While the full extent of modified substrates that comprise the "PTM-ome" are slowly emerging, how the upstream enzymes catalyzing these processes are regulated themselves is not well understood, particularly in the context of neurodegeneration. Here, we describe the reciprocal regulation of a kinase, the microtubule affinity-regulating kinase 2 (MARK2), and an acetyltransferase, CREB-binding protein (CBP), two enzymes known to extensively modify tau proteins in the progression of Alzheimer's disease. We found that MARK2 negatively regulates CBP and, conversely, CBP directly acetylates and inhibits MARK2 kinase activity. These findings highlight a reciprocal negative feedback loop between a kinase and an acetyltransferase, which has implications for how PTM interplay is coordinated on substrates including tau. Our study suggests that PTM profiles occur through the posttranslational control of the master PTM remodeling enzymes themselves.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Acetiltransferases/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Retroalimentação , Humanos , Camundongos , Microtúbulos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Cell Rep ; 35(4): 109037, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910013

RESUMO

The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.


Assuntos
Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos
3.
Nat Commun ; 11(1): 5522, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139698

RESUMO

Tauopathies including Alzheimer's disease (AD) are marked by the accumulation of aberrantly modified tau proteins. Acetylated tau, in particular, has recently been implicated in neurodegeneration and cognitive decline. HDAC6 reversibly regulates tau acetylation, but its role in tauopathy progression remains unclear. Here, we identified an HDAC6-chaperone complex that targets aberrantly modified tau. HDAC6 not only deacetylates tau but also suppresses tau hyperphosphorylation within the microtubule-binding region. In neurons and human AD brain, HDAC6 becomes co-aggregated within focal tau swellings and human AD neuritic plaques. Using mass spectrometry, we identify a novel HDAC6-regulated tau acetylation site as a disease specific marker for 3R/4R and 3R tauopathies, supporting uniquely modified tau species in different neurodegenerative disorders. Tau transgenic mice lacking HDAC6 show reduced survival characterized by accelerated tau pathology and cognitive decline. We propose that a HDAC6-dependent surveillance mechanism suppresses toxic tau accumulation, which may protect against the progression of AD and related tauopathies.


Assuntos
Disfunção Cognitiva/patologia , Desacetilase 6 de Histona/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Acetilação , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Desacetilase 6 de Histona/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fosforilação , Processamento de Proteína Pós-Traducional , Tauopatias/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...