Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 598(7881): 439-443, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671137

RESUMO

Dexterous magnetic manipulation of ferromagnetic objects is well established, with three to six degrees of freedom possible depending on object geometry1. There are objects for which non-contact dexterous manipulation is desirable that do not contain an appreciable amount of ferromagnetic material but do contain electrically conductive material. Time-varying magnetic fields generate eddy currents in conductive materials2-4, with resulting forces and torques due to the interaction of the eddy currents with the magnetic field. This phenomenon has previously been used to induce drag to reduce the motion of objects as they pass through a static field5-8, or to apply force on an object in a single direction using a dynamic field9-11, but has not been used to perform the type of dexterous manipulation of conductive objects that has been demonstrated with ferromagnetic objects. Here we show that manipulation, with six degrees of freedom, of conductive objects is possible by using multiple rotating magnetic dipole fields. Using dimensional analysis12, combined with multiphysics numerical simulations and experimental verification, we characterize the forces and torques generated on a conductive sphere in a rotating magnetic dipole field. With the resulting model, we perform dexterous manipulation in simulations and physical experiments.

2.
Sensors (Basel) ; 20(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066691

RESUMO

Continuous in-home monitoring of Parkinson's Disease (PD) symptoms might allow improvements in assessment of disease progression and treatment effects. As a first step towards this goal, we evaluate the feasibility of a wrist-worn wearable accelerometer system to detect PD tremor in the wild (uncontrolled scenarios). We evaluate the performance of several feature sets and classification algorithms for robust PD tremor detection in laboratory and wild settings. We report results for both laboratory data with accurate labels and wild data with weak labels. The best performance was obtained using a combination of a pre-processing module to extract information from the tremor spectrum (based on non-negative factorization) and a deep neural network for learning relevant features and detecting tremor segments. We show how the proposed method is able to predict patient self-report measures, and we propose a new metric for monitoring PD tremor (i.e., percentage of tremor over long periods of time), which may be easier to estimate the start and end time points of each tremor event while still providing clinically useful information.


Assuntos
Acelerometria/instrumentação , Redes Neurais de Computação , Doença de Parkinson , Tremor , Dispositivos Eletrônicos Vestíveis , Aprendizado Profundo , Humanos , Doença de Parkinson/diagnóstico , Tremor/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...