Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 328: 103161, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728771

RESUMO

Complex fluids encompass a significant proportion of the materials that we use today from feedstocks such as cellulose fibre dispersions, materials undergoing processing or formulation, through to consumer end products such as shampoo. Such systems exhibit intricate behaviour due to their composition and microstructure, particularly when analysing their texture and response to flow (rheology). In particular, these fluids when flowing may undergo transitions in their nano- to microstructure, potentially aligning with flow fields, breaking and reassembling or reforming, or entirely changing phase. This manifests as macroscopic changes in material properties, such as core-annular flow of concentrated emulsions in pipelines or the favourable texture of liquid soaps. Small-angle scattering provides a unique method for probing underlying changes in fluid nano- to microstructure, from a few angströms to several microns, of complex fluids under flow. In particular, the alignment of rigid components or shape changes of soft components can be explored, along with local inter-particle ordering and global alignment with macroscopic flow fields. This review highlights recent important developments in the study of such complex fluid systems that couple flow or shear conditions with small-angle scattering measurements, and highlights the physical insight obtained by these experiments. Recent results from neutron scattering measurements made using a simple flow cell are presented, offering a facile method to explore alignment of complex fluids in an easily accessible geometry, and contextualised within existing and potential future research questions.

2.
J Colloid Interface Sci ; 659: 1029-1041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38241974

RESUMO

Polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets are promising candidates for medical imaging and drug delivery applications. This study investigates their phase transition into microbubbles under near-infrared (NIR) illumination in situ using small- and ultra-small-angle neutron scattering (SANS and USANS) and contrast variation techniques. Supported by optical microscopy, thermogravimetric analysis, and ultrasound imaging, SANS and USANS results reveal rapid phase transition rates upon NIR illumination, dependent on PFC content and droplet size distribution. Specifically, perfluoropentane droplets rapidly transform into bubbles upon NIR irradiation, whereas perfluorohexane droplets exhibit greater resistance to phase change (bulk boiling points = 30 °C and 60 °C, respectively). Furthermore, smaller emulsion droplets with unimodal distribution resist NIR-triggered phase changes better than their bimodal counterparts. This observation is attributable to the lower boiling points of large emulsion droplets (lower Laplace pressure than smaller droplets) and the faster photothermal heating rates due to their thicker polydopamine shells. The insights gained from these techniques are crucial for designing phase-change emulsions activated by NIR for photothermal therapies and controlled drug delivery.

3.
J Colloid Interface Sci ; 657: 25-36, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38029526

RESUMO

HYPOTHESIS: Interactions across incredibly thin layers of fluids, known as thin films, underpin many important processes involving colloids, such as wetting-dewetting phenomena. Often in these systems, thin films are composed of complex fluids that contain dispersed components, such as spherical micelles, giving rise to oscillatory structural forces due to preferential layering under confinement. Modelling of thin film dynamics involving Derjaguin-Landau-Verwey-Overbeek (DLVO) type forces has been widely reported using the Stokes-Reynolds-Young-Laplace (SRYL) model, and we hypothesize that this theory can be extended to a concentrated micellar system by including an oscillatory structural force term in the disjoining pressure. EXPERIMENTS: We study the drainage behaviour of thin films comprising sodium dodecyl sulfate (SDS) micelles across a range of concentrations and interaction conditions between an air bubble and a mica disk using a custom-built dual-wave interferometry apparatus. FINDINGS: Early-stage film behaviour is dominated by hydrodynamics, which can be well reproduced by the SRYL model. However, experimental profiles drain significantly faster than predicted, transitioning into a structural force dominated phase characterised by four types of film ripping instabilities that we term 'waving', 'ridging', 'webbing', and 'hole-sheeting'. These instabilities were mapped according to SDS concentration and approach velocity, providing insight into the interplay between structural forces and hydrodynamic conditions.

4.
Langmuir ; 40(1): 211-220, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154121

RESUMO

Surfactants provide detergency, foaming, and texture in personal care formulations, yet the micellization of typical industrial primary and cosurfactants is not well understood, particularly in light of the polydisperse nature of commercial surfactants. Synergistic interactions are hypothesized to drive the formation of elongated wormlike self-assemblies in these mixed surfactant systems. Small-angle neutron scattering, rheology, and pendant drop tensiometry are used to examine surface adsorption, viscoelasticity, and self-assembly structure for wormlike micellar formulations comprising cocoamidopropyl betaine, and its two major components laurylamidopropyl betaine and oleylamidopropyl betaine, with sodium alkyl ethoxy sulfates. The tail length of sodium alkyl ethoxy sulfates was related to their ability to form wormlike micelles in electrolyte solutions, indicating that a tail length greater than 10 carbons is required to form wormlike micelles in NaCl solutions, with the decyl homologue unable to form elongated micelles and maintaining a low viscosity even at 20 wt % surfactant loading with 4 wt % NaCl present. For these systems, the incorporation of a disperse ethoxylate linker does not enable shorter chain surfactants to elongate into wormlike micelles for single-component systems; however, it could increase the interactions between surfactants in mixed surfactant systems. For synergy in surfactant mixing, the nonideal regular solution theory is used to study the sulfate/betaine mixtures. Tail mismatch appears to drive lower critical micelle concentrations, although tail matching improves synergy with larger relative reductions in critical micelle concentrations and greater micelle elongation, as seen by both tensiometric and scattering measurements.

5.
ACS Bio Med Chem Au ; 3(3): 261-269, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363082

RESUMO

Standard optical imaging is diffraction-limited and lacks the resolving power to visualize many of the organelles and proteins found within the cell. The advent of super-resolution techniques overcame this barrier, enabling observation of subcellular structures down to tens of nanometers in size; however these techniques require or are typically applied to fixed samples. This raises the question of how well a fixed-cell image represents the system prior to fixation. Here we present the addition of live-cell Super-Resolution Optical Fluctuation Imaging (SOFI) to a previously reported correlative process using Single Molecule Localization Microscopy (SMLM) and Atomic Force Microscopy (AFM). SOFI was used with fluorescent proteins and low laser power to observe cellular ultrastructure in live COS-7 cells. SOFI-SMLM-AFM of microtubules showed minimal changes to the microtubule network in the 20 min between live-cell SOFI and fixation. Microtubule diameters were also analyzed through all microscopies; SOFI found diameters of 249 ± 68 nm and SMLM was 71 ± 33 nm. AFM height measurements found microtubules to protrude 26 ± 13 nm above the surrounding cellular material. The correlation of SMLM and AFM was extended to two-color SMLM to image both microtubules and actin. Two target SOFI was performed with various fluorescent protein combinations. rsGreen1-rsKAME, rsGreen1-Dronpa, and ffDronpaF-rsKAME fluorescent protein combinations were determined to be suitable for two target SOFI imaging. This correlative application of super-resolution live-cell and fixed-cell imaging revealed minimal artifacts created for the imaged target structures through the sample preparation procedure and emphasizes the power of correlative microscopy.

6.
Mol Pharm ; 20(5): 2686-2701, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37066621

RESUMO

Microglia-mediated neuroinflammation is commonly associated with neurodegeneration and has been implicated in several neurological disorders, such as Alzheimer's disease and Parkinson's disease. Therefore, it is crucial to develop a detailed understanding of the interaction of potential nanocarriers with microglial cells to efficiently deliver anti-inflammatory molecules. In this study, we applied brush polymers as a modular platform to systematically investigate their association with murine (BV-2) and human (HMC3) microglial cell lines in the presence and absence of the pro-inflammatory inducer lipopolysaccharide (LPS) using flow cytometry. Brush polymers of different sizes and shapes, ranging from ellipsoid to worm-like cylinders, were prepared through a combination of the two building blocks carboxylated N-acylated poly(aminoester)s (NPAEs)-based polymers and poly(2-ethyl-2-oxazoline)-NH2 (PEtOx-NH2) and characterized by 1H NMR spectroscopy, size exclusion chromatography, and small-angle neutron scattering. Generally, ellipsoidal particles showed the highest cellular association. Moreover, while no significant differences in murine cell association were observed, the brush polymers revealed a significant accumulation in LPS-activated human microglia compared to resting cells, emphasizing their higher affinity to activated HMC3 cells. Brush polymers with the highest cell association were further modified with the anti-inflammatory agent N-acetyl cysteine (NAC) in a reversible manner. The brush polymer-NAC conjugates were found to significantly attenuate the production of interleukin 6 (p < 0.001) in LPS-activated HMC3 cells compared to LPS-activated BV-2 cells. Thus, the presented brush polymer-NAC conjugates showed a high anti-inflammatory activity in human microglia, suggesting their potential for disease-targeted therapy of microglial-mediated neuroinflammation in the future.


Assuntos
Microglia , Polímeros , Camundongos , Humanos , Animais , Microglia/metabolismo , Polímeros/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Acetilcisteína/química
7.
J Mater Chem B ; 10(46): 9662-9670, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382405

RESUMO

Mesoporous polydopamine (PDA) nanobowls, which can be prepared using Pluronic® F-127, ammonia, and 1,3,5-trimethylbenzene (TMB), are one of the most studied anisotropic nanoparticle systems. However, only limited reports on polymerised analogues polynorepinephrine (PNE) and polyepinephrine (PEP) exist. Herein, we present modifications to a one-pot, soft template method, originally applied to make PDA nanobowls, to fabricate new shape-anisotropic nanoparticles (mesoporous nanospheres or "nano-golf balls" and nanobowls) using PNE and PEP for the first time. These modifications include the use of different oil phases (TMB, toluene and o-xylene) and ammonia concentrations to induce anisotropic growth of PDA, PNE, and PEP particles. Moreover, this work features the application of oddly shaped PDA, PNE, and PEP nanoparticles as intravascular photoacoustic imaging enhancers in Intralipid®-India ink-based tissue-mimicking phantoms. Photoacoustic imaging experiments showed that mesoporous nanobowls exhibit stronger enhancement, in comparison to their mesoporous nano-golf ball and nanoaggregate counterparts. The photoacoustic enhancement also followed the general trend PDA > PNE > PEP due to the differences in the rates of polymerisation of the monomers and the optical absorption of the resulting polymers. Lastly, about two- to four-fold enhancement in photoacoustic signals was observed for the mesoporous nanostructures, when compared to smooth nanospheres and their nano-aggregates. These results suggest that shape manipulation can aid in overcoming the inherently lower performance of PNE and PEP as photoacoustic imaging agents, compared to PDA. Since nanomaterials with mesoporous and anisotropic morphologies have significant, unexplored potential with emerging applications, these results set the groundwork for future studies on photoacoustically active oddly shaped PNE- and PEP-based nanosystems.


Assuntos
Nanosferas , Nanoestruturas , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Catecolaminas , Amônia , Polímeros/química , Nanoestruturas/química , Nanosferas/química , Neurotransmissores
8.
J Mater Chem B ; 10(39): 7895-7904, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36106821

RESUMO

While applications of polydopamine (PDA) are exponentially growing, research concerning the closely related neurotransmitter derivative polynorepinephrine (PNE) is in paucity, even though norepinephrine shares dopamine's ability to self-polymerize and form a coating film that is nearly substrate-agnostic. In this review, we demonstrate that PNE can be used as an alternative to PDA with equal or ever superior performance. PNE offers a thinner and smoother coating surface and thus is capable of more effectively resisting fouling by biofoulants, enhancing cell adhesion capability, surface hydrophilicity and biomolecule immobilisation. With the abundance of catechol, amino and hydroxyl groups in PNE's structure, PNE can perform as an electron donor and receiver at the same time and initiate ring opening and redox reactions. It has also been shown that PNE has the potential to be used as a biosensor due to its bioconjugation and molecular recognition ability. Here, we summarise the applications of PNE to date and discuss its potential research directions in the near future.


Assuntos
Coloides , Dopamina , Adesão Celular , Interações Hidrofóbicas e Hidrofílicas , Norepinefrina/química
9.
Langmuir ; 38(34): 10585-10600, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35984422

RESUMO

Increasing demand for copper resources, accompanied by increasing pollution, has resulted in an urgent need for effective materials for copper binding and extraction. Polyethylenimine (PEI) is one of the strongest copper-chelating agents but is not suitable directly (as is) for most applications due to its high solubility in water. PEI-based composite materials show potential as efficient and practical alternatives. In the present work, the interaction of copper ions with PEI-silica nanocomposite particles and precursor PEI microgels (as a reference) is investigated. It is hypothesized that the main driving force of the reaction is chelation of copper ions by amino groups in the PEI network. The presence of silica in the PEI-silica composites was shown to increase the copper-binding capacity in comparison with the parent microgel. The copper-binding behavior of etched (PEI-free "ghost") composite particles in comparison with the original composites and microgel particles shows that silica nanoparticles in the composite structure increase the number of copper-binding sites in the PEI network rather than adsorbing copper themselves. PEI-silica composites can be easily recycled after copper adsorption by simply washing in 1 M nitric acid, which results in complete copper extraction. Employing this recovery method, PEI-silica composite particles can be used for multiple, efficient cycles of copper removal and extraction.


Assuntos
Microgéis , Nanocompostos , Quelantes , Cobre/química , Polietilenoimina/química , Dióxido de Silício/química
10.
Methods Appl Fluoresc ; 10(4)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35901806

RESUMO

Correlative imaging methods can provide greater information for investigations of cellular ultra-structure, with separate analysis methods complementing each other's strengths and covering for deficiencies. Here we present a method for correlative applications of super resolution and atomic force microscopies, optimising the sample preparation for correlative imaging of the cellular cytoskeleton in COS-7 cells. This optimisation determined the order of permeabilisation and fixation, the concentration of Triton X-100 surfactant used and time required for sufficient removal of the cellular membrane while maintaining the microtubule network. Correlative SMLM/AFM imaging revealed the different information that can be obtained through each microscopy. The widths of microtubules and microtubule clusters were determined from both AFM height measurements and Gaussian fitting of SMLM intensity cross sections, these were then compared to determine the orientation of microtubules within larger microtubule bundles. The ordering of microtubules at intersections was determined from the AFM height profiles as each microtubule crosses the other. The combination of both microtubule diameter measurements enabled greater information on their structure to be found than either measurement could individually.


Assuntos
Citoesqueleto , Microtúbulos , Animais , Células COS , Chlorocebus aethiops , Microscopia de Força Atômica/métodos
11.
Langmuir ; 38(24): 7522-7534, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678153

RESUMO

Azobenzene-containing surfactants (azo-surfactants) have garnered significant attention for their use in generating photoresponsive foams, interfaces, and colloidal systems. The photoresponsive behavior of azo-surfactants is driven by the conformational and electronic changes that occur when the azobenzene chromophore undergoes light-induced trans ⇌ cis isomerization. Effective design of surfactants and targeting of their properties requires a robust understanding of how the azobenzene functionality interacts with surfactant structure and influences overall surfactant behavior. Herein, a library of tail substituted azo-surfactants were synthesized and studied to better understand how surfactant structure can be tailored to exploit the azobenzene photoswitch. This work shows that tail group structure (length and branching) has a profound influence on the critical micelle concentration of azo-surfactants and their properties once adsorbed to an air-water interface. Neutron scattering studies revealed the unique role that intermolecular π-π azobenzene interactions have on the self-assembly of azo-surfactants, and how the influence of these interactions can be tuned using tail group structure to target specific aqueous aggregate morphologies.

12.
Ultrason Sonochem ; 86: 106041, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35617883

RESUMO

The current work features process parameters for the ultrasound (25 kHz)-assisted fabrication of polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets with bimodal (modes at 100-600 nm and 1-6 µm) and unimodal (200-600 nm) size distributions. Initial screening of these materials revealed that only PDA/PFC emulsion droplets with bimodal distributions showed photoacoustic signal enhancement due to large size of their optically absorbing PDA shells. Performance of this particular type of emulsion droplets as photoacoustic agents were evaluated in Intralipid®-India ink media, mimicking the optical scattering and absorbanceof various tissuetypes. From these measurements, it was observed that PDA/PFC droplets with bimodal size distributions can enhance the photoacoustic signal of blood-mimicking phantom by up to five folds in various tissue-mimicking phantoms with absorption coefficients from 0.1 to 1.0 cm-1. Furthermore, using the information from enhanced photoacoustic images at 750 nm, the ultimate imaging depth was explored for polydopamine-shelled, perfluorohexane (PDA/PFH) emulsion droplets by photon trajectory simulations in 3D using a Monte Carlo approach. Based on these simulations, maximal tissue imaging depths for PDA/PFH emulsion droplets range from 10 to 40 mm, depending on the tissue type. These results demonstrate for the first time that ultrasonically fabricated PDA/PFC emulsion droplets have great potential as photoacoustic imaging agents that can be complemented with other reported characteristics of PDA/PFC emulsion droplets for extended applications in theranostics and other imaging modalities.


Assuntos
Fluorocarbonos , Técnicas Fotoacústicas , Emulsões , Indóis , Técnicas Fotoacústicas/métodos , Polímeros
13.
Ultrasound Med Biol ; 48(8): 1373-1396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35641393

RESUMO

Ultrasound has important applications, predominantly in the field of diagnostic imaging. Presently, colloidal systems such as microbubbles, phase-change emulsion droplets and particle systems with acoustic properties and multiresponsiveness are being developed to address typical issues faced when using commercial ultrasound contrast agents, and to extend the utility of such systems to targeted drug delivery and multimodal imaging. Current technologies and increasing research data on the chemistry, physics and materials science of new colloidal systems are also leading to the development of more complex, novel and application-specific colloidal assemblies with ultrasound contrast enhancement and other properties, which could be beneficial for multiple biomedical applications, especially imaging-guided treatments. In this article, we review recent developments in new colloids with applications that use ultrasound contrast enhancement. This work also highlights the emergence of colloidal materials fabricated from or modified with biologically derived and bio-inspired materials, particularly in the form of biopolymers and biomembranes. Challenges, limitations, potential developments and future directions of these next-generation colloidal systems are also presented and discussed.


Assuntos
Coloides , Microbolhas , Acústica , Coloides/química , Meios de Contraste/química , Ultrassonografia
14.
Sci Adv ; 8(11): eabn0681, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302847

RESUMO

The mechanical properties of crystals are controlled by the translational symmetry of their structures. But for glasses with a disordered structure, the link between the symmetry of local particle arrangements and stability is not well established. In this contribution, we provide experimental verification that the centrosymmetry of nearest-neighbor polyhedra in a glass strongly correlates with the local mechanical stability. We examine the distribution of local stability and local centrosymmetry in a glass during aging and deformation using microbeam x-ray scattering. These measurements reveal the underlying relationship between particle-level structure and larger-scale behavior and demonstrate that spatially connected, coordinated local transformations to lower symmetry structures are fundamental to these phenomena. While glassy structures lack obvious global symmetry breaking, local structural symmetry is a critical factor in predicting stability.

15.
J Am Chem Soc ; 144(9): 3875-3891, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226480

RESUMO

From atomic force microscopy (AFM) experiments, we report a new phenomenon in which the dissolution rate of fused silica is enhanced by more than 5 orders of magnitude by simply pressing a second, dissimilar surface against it and oscillating the contact pressure at low kHz frequencies in deionized water. The silica dissolution rate enhancement was found to exhibit a strong dependence on the pressure oscillation frequency consistent with a resonance effect. This harmonic enhancement of the silica dissolution rate was only observed at asymmetric material interfaces (e.g., diamond on silica) with no evidence of dissolution rate enhancement observed at symmetric material interfaces (i.e., silica on silica) within the experimental time scales. The apparent requirement for interface dissimilarity, the results of analogous experiments performed in anhydrous dodecane, and the observation that the silica "dissolution pits" continue to grow in size under contact stresses well below the silica yield stress refute a mechanical deformation or chemo-mechanical origin to the observed phenomenon. Instead, the silica dissolution rate enhancement exhibits characteristics consistent with a previously described 'electrochemical pressure solution' mechanism, albeit, with greatly amplified kinetics. Using a framework of electrochemical pressure solution, an electrochemical model of mineral dissolution, and a recently proposed "surface resonance" theory, we present an electro-chemo-mechanical mechanism that explains how oscillating the contact pressure between dissimilar surfaces in water can amplify surface dissolution rates by many orders of magnitude. This reaction rate enhancement mechanism has implications not only for dissolution but also for potentially other reactions occurring at the solid-liquid interface, e.g. catalysis.


Assuntos
Dióxido de Silício , Água , Cinética , Microscopia de Força Atômica , Solubilidade
16.
J Colloid Interface Sci ; 607(Pt 1): 836-847, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34536938

RESUMO

Perfluorocarbon emulsion droplets are hybrid colloidal materials with vast applications, ranging from imaging to drug delivery, due to their controllable phase transition into microbubbles via heat application or acoustic droplet vapourisation. The current work highlights the application of small- and ultra-small-angle neutron scattering (SANS and USANS), in combination with contrast variation techniques, in observing the in situ phase transition of polydopamine-shelled, perfluorocarbon (PDA/PFC) emulsion droplets with controlled polydispersity into microbubbles upon heating. We correlate these measurements with optical and transmission electron microscopy imaging, dynamic light scattering, and thermogravimetric analysis to characterise these emulsions, and observe their phase transition into microbubbles. Results show that the phase transition of PDA/PFC droplets with perfluorohexane (PFH), perfluoropentane (PFP), and PFH-PFP mixtures occur at temperatures that are around 30-40 °C higher than the boiling points of pure liquid PFCs, and this is influenced by the specific PFC compositions (perfluorohexane, perfluoropentane, and mixtures of these PFCs). Analysis and model fitting of neutron scattering data allowed us to monitor droplet size distributions at different temperatures, giving valuable insights into the transformation of these polydisperse, emulsion droplet systems.


Assuntos
Fluorocarbonos , Microbolhas , Emulsões , Temperatura Alta , Indóis , Nêutrons , Polímeros
17.
J Colloid Interface Sci ; 606(Pt 1): 328-336, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392029

RESUMO

HYPOTHESIS: The self-assembly of long tail sugar-based surfactants into worm-like micelles has recently been demonstrated, and the rheological properties of such systems have been shown to be tuneable through subtle modifications of the molecular characteristics of the surfactant monomer. In particular, the anomeric configuration of the hexadecylmaltoside headgroup was shown to induce profound changes in the nanostructure and rheology of the system. The origin of such changes is hypothesised to arise from differences in the structure and relaxation of the micellar networks in the semi-dilute regime. EXPERIMENTS: Here we explore the molecular background to the flow properties of the two anomers of hexadecylmaltoside (α- and ß-C16G2) by directly connecting their rheological behaviour to the micelle morphology. For this purpose, 1-3 plane rheo-small-angle neutron scattering measurements, using a Couette cell geometry, probed the structural changes in the micellar phase under shear. The effect of surfactant anomeric configuration, surfactant concentration, temperature and mixing ratio of the two anomers were investigated. The static micelle structure in the semi-dilute regime was determined using the polymer reference interaction site model. FINDINGS: The segmental alignment of the micellar phase was studied under several flow conditions, showing that the shear-thinning behaviour relates to the re-arrangement of ß-C16G2 worm-like micelles, whilst shorter α-C16G2 micelles are considerably less affected by the flow. The results are rationalised in terms of micelle alignment and disruption of the entangled network, providing a detailed mechanism by which sugar-based surfactants control the rheology of the fluid. To further enable future studies, we provide the complete code for modelling micelle structure in the semi-dilute regime using the polymer reference interaction site model.


Assuntos
Micelas , Nanoestruturas , Espalhamento a Baixo Ângulo , Açúcares , Tensoativos
18.
Langmuir ; 38(1): 191-202, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34932365

RESUMO

A novel procedure for the synthesis of polyethylenimine (PEI)-silica nanocomposite particles with high adsorption capacities has been developed based on an emulsion templating concept. The exceptional chelating properties of PEI as the parent polymer for the particle core promote the binding abilities of the resulting composite for charged species. Further, the subsequent introduction of silica via the self-catalyzed hydrolysis of tetraethoxysilane facilitates production of robust composite particles with smooth surfaces, enabling potential use in multiphase environments. To enable tailored application in solid/liquid porous environments, the production of particles with reduced sizes was attempted by modulating the shear rates and surfactant concentrations during emulsification. The use of high-speed homogenization resulted in a substantial decrease in average particle size, while increasing surfactant loading only had a limited effect. All types of nanocomposites produced demonstrated excellent binding capacities for copper ions as a test solute. The maximum binding capacities of the PEI-silica nanocomposites of 210-250 mg/g are comparable to or exceed those of other copper binding materials, opening up great application potential in resources, chemical processing, and remediation industries.

19.
Phys Chem Chem Phys ; 24(2): 797-806, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927644

RESUMO

The spontaneous adsorption of graphene oxide (GO) sheets at the air-water interface is explored using X-ray reflectivity (XRR) measurements. As a pure aqueous dispersion, GO sheets do not spontaneously adsorb at the air-water interface due to their high negative surface potential (-60 mV) and hydrophilic functionality. However, when incorporated with surfactant molecules at optimal ratios and loadings, GO sheets can spontaneously be driven to the surface. It is hypothesised that surfactant molecules experience favourable attractive interactions with the surfaces of GO sheets, resulting in co-assembly that serves to render the sheets surface active. The GO/surfactant composites then collectively adsorb at the air-water interface, with XRR analysis suggesting an interfacial structure comprising surfactant tailgroups in air and GO/surfactant headgroups in water for a combined thickness of 30-40 Å, depending on the surfactant used. Addition of too much surfactant appears to inhibit GO surface adsorption by saturating the interface, and low loadings of GO/surfactant composites (even at optimal ratios) do not show significant adsorption indicating a partitioning effect. Lastly, surfactant chemistry is also a key factor dictating adsorption capacity of GO. The zwitterionic surfactant oleyl amidopropyl betaine causes marked increases in GO surface activity even at very low concentrations (≤0.2 mM), whereas non-ionic surfactants such as Triton X-100 and hexaethyleneglycol monododecyl ether require higher concentrations (ca. 1 mM) in order to impart spontaneous adsorption of the sheets. Anionic surfactants do not enhance GO surface activity presumably due to like-charge repulsions that prevent co-assembly. This work provides useful insight into the synergy between GO sheets and molecular amphiphiles in aqueous systems for enhancing the surface activity of GO, and can be used to inform system formulation for developing water-friendly, surface active composites based around atomically thin materials.

20.
J Mater Chem B ; 9(46): 9575-9582, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766964

RESUMO

In this article, we present a facile and robust method for the surfactant-free preparation of polynorepinephrine stabilised microcapsules templated from an oil-in-water emulsion. The resulting microcapsule structures are dependent on the concentration of Cu2+ used to catalyse norepinephrine polymerisation. When the concentration of Cu2+ increases, the diameter of the microcapsules and the thickness of the shell increase correspondingly. The mechanical and chemical stability provided by the polynorepinephrine shell are explored using surface pressure measurements and atomic force microscopy, demonstrating that a rigid and robust polynorepinephrine shell is formed. In order to demonstrate potential application of the microcapsules in sustained release, Nile red stained squalane was encapsulated, and pH responsive release was monitored. It was seen that by controlling pH, the release profile could be controlled, with highest release efficacy achieved in alkaline conditions, offering a new pathway for development of encapsulation systems for the delivery of water insoluble actives.


Assuntos
Nanocompostos/química , Norepinefrina/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Cápsulas/síntese química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Emulsões/química , Escherichia coli/efeitos dos fármacos , Humanos , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Recidiva Local de Neoplasia/tratamento farmacológico , Polietilenoglicóis/química , Neoplasias Cutâneas , Staphylococcus aureus/efeitos dos fármacos , Engenharia Tecidual , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...