Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Blood Adv ; 6(17): 5009-5023, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35675515

RESUMO

Multiple myeloma (MM) is an incurable and aggressive plasma cell malignancy characterized by a complex karyotype with multiple structural variants (SVs) and copy-number variations (CNVs). Linked-read whole-genome sequencing (lrWGS) allows for refined detection and reconstruction of SVs by providing long-range genetic information from standard short-read sequencing. This makes lrWGS an attractive solution for capturing the full genomic complexity of MM. Here we show that high-quality lrWGS data can be generated from low numbers of cells subjected to fluorescence-activated cell sorting (FACS) without DNA purification. Using this protocol, we analyzed MM cells after FACS from 37 patients with MM using lrWGS. We found high concordance between lrWGS and fluorescence in situ hybridization (FISH) for the detection of recurrent translocations and CNVs. Outside of the regions investigated by FISH, we identified >150 additional SVs and CNVs across the cohort. Analysis of the lrWGS data allowed for resolution of the structure of diverse SVs affecting the MYC and t(11;14) loci, causing the duplication of genes and gene regulatory elements. In addition, we identified private SVs causing the dysregulation of genes recurrently involved in translocations with the IGH locus and show that these can alter the molecular classification of MM. Overall, we conclude that lrWGS allows for the detection of aberrations critical for MM prognostics and provides a feasible route for providing comprehensive genetics. Implementing lrWGS could provide more accurate clinical prognostics, facilitate genomic medicine initiatives, and greatly improve the stratification of patients included in clinical trials.


Assuntos
Mieloma Múltiplo , Variações do Número de Cópias de DNA , Genômica , Humanos , Hibridização in Situ Fluorescente , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Translocação Genética , Sequenciamento Completo do Genoma
2.
Heliyon ; 8(6): e09651, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35756107

RESUMO

Spatial information of tissues is an essential component to reach a holistic overview of gene expression mechanisms. The sequencing-based Spatial transcriptomics approach allows to spatially barcode the whole transcriptome of tissue sections using microarray glass slides. However, manual preparation of high-quality tissue sequencing libraries is time-consuming and subjected to technical variability. Here, we present an automated adaptation of the 10x Genomics Visium library construction on the widely used Agilent Bravo Liquid Handling Platform. Compared to the manual Visium library preparation, our automated approach reduces hands-on time by over 80% and provides higher throughput and robustness. Our automated Visium library preparation protocol provides a new strategy to standardize spatially resolved transcriptomics analysis of tissues at scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA