Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Toxicol ; 33(12): 1395-406, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22936336

RESUMO

Sulfolane is a widely used industrial solvent that is often used for gas treatment (sour gas sweetening; hydrogen sulfide removal from shale and coal processes, etc.), and in the manufacture of polymers and electronics, and may be found in pharmaceuticals as a residual solvent used in the manufacturing processes. Sulfolane is considered a high production volume chemical with worldwide production around 18 000-36 000 tons per year. Given that sulfolane has been detected as a contaminant in groundwater, an important potential route of exposure is tap water ingestion. Because there are currently no federal drinking water standards for sulfolane in the USA, we developed a noncancer oral reference dose (RfD) based on benchmark dose modeling, as well as a tap water screening value that is protective of ingestion. Review of the available literature suggests that sulfolane is not likely to be mutagenic, clastogenic or carcinogenic, or pose reproductive or developmental health risks except perhaps at very high exposure concentrations. RfD values derived using benchmark dose modeling were 0.01-0.04 mg kg(-1) per day, although modeling of developmental endpoints resulted in higher values, approximately 0.4 mg kg(-1) per day. The lowest, most conservative, RfD of 0.01 mg kg(-1) per day was based on reduced white blood cell counts in female rats. This RfD was used to develop a tap water screening level that is protective of ingestion, viz. 365 µg l(-1). It is anticipated that these values, along with the hazard identification and dose-response modeling described herein, should be informative for risk assessors and regulators interested in setting health-protective drinking water guideline values for sulfolane.


Assuntos
Benchmarking , Água Potável , Modelos Teóricos , Tiofenos , Testes de Toxicidade , Poluentes Químicos da Água , Administração Oral , Animais , Relação Dose-Resposta a Droga , Água Potável/análise , Água Potável/normas , Água Subterrânea/química , Concentração Máxima Permitida , Nível de Efeito Adverso não Observado , Valores de Referência , Especificidade da Espécie , Tiofenos/análise , Tiofenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Technol ; 41(20): 6914-9, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17993128

RESUMO

Arsenic compounds have been applied at the land surface as pesticides in agricultural areas globally. The purpose of this study was to evaluate the fate of anthropogenic arsenic applications related to agriculture, using arsenic applications on cotton in the southern High Plains (SHP), Texas, as a case study and examining possible linkages with contamination of the underlying Ogallala aquifer in this region, where 36% of wells exceed the new EPA 10 microg/L standard. Unsaturated zone soil samples were collected from boreholes beneath natural ecosystems (grassland/ shrubland) to provide a control (no arsenic application) (5 profiles) and cotton cropland (20 profiles) for analyses of water-extractable arsenic, vanadium, phosphate, chloride, and nitrate. Natural ecosystem profiles have high arsenic concentrations at depth (maximum of 7.2-69.6 microg As/ kg dry soil at 5.9-21.4 m depth) that are attributed to a geologic source. Most profiles beneath cotton cropland have high arsenic concentrations within the upper meter (profile means 1.7 to 31.6 microg/kg) that correlate with phosphate (r = 0.70, p < 0.01) and are attributed to anthropogenic arsenic application associated with phosphate fertilizer application. High arsenic concentrations at >1 m depth (profile means < or =36.3 microg/kg) found in cropland profiles are attributed to a geologic source because of similarity with profiles beneath natural ecosystems, lack of correlation with phosphate, and pore-water ages that predate anthropogenic arsenic application in many profiles. GIS analyses showed poor correlations between groundwater arsenic and percent cultivated land (r = -0.15, p < 0.01), groundwater nitrate (r = 0.30, p < 0.01), and water table depth (r= -0.31, p < 0.01), further supporting the idea that anthropogenic-derived arsenic in the shallow subsurface is not linked to groundwater arsenic contamination in this region.


Assuntos
Arsênio/análise , Poluentes Químicos da Água/análise , Produtos Agrícolas , Ecossistema , Gossypium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA