Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 14: 139, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26215634

RESUMO

BACKGROUND: Characterization of molecular mechanisms underpinning development of pancreatic ductal adenocarcinoma (PDAC) may lead to the identification of novel therapeutic targets and biomarkers. SgK223, also known as Pragmin, is a pseudokinase and scaffolding protein closely related to SgK269/PEAK1. Both proteins are implicated in oncogenic tyrosine kinase signaling, but their mechanisms and function remain poorly characterized. METHODS: Expression of SgK223 in PDAC and PDAC cell lines was characterized using gene expression microarrays, mass spectrometry (MS)-based phosphoproteomics and Western blotting. SgK223 was overexpressed in human pancreatic ductal epithelial (HPDE) cells via retroviral transduction, and knocked down in PDAC cells using siRNA. Cell proliferation was determined using a colorimetric cell viability assay, and cell migration and invasion using transwells. Expression of markers of epithelial-mesenchyme transition (EMT) was assayed by quantitative PCR. SgK223 and Stat3 signaling was interrogated by immunoprecipitation, Western blot and gene reporter assays. The functional role of specific kinases and Stat3 was determined using selective small molecule inhibitors. RESULTS: Elevated site-selective tyrosine phosphorylation of SgK223 was identified in subsets of PDAC cell lines, and increased expression of SgK223 detected in several PDAC cell lines compared to human pancreatic ductal epithelial (HPDE) cells and in PDACs compared to normal pancreas. Expression of SgK223 in HPDE cells at levels comparable to those in PDAC did not alter cell proliferation but led to a more elongated morphology, enhanced migration and invasion and induced gene expression changes characteristic of a partial EMT. While SgK223 overexpression did not affect activation of Erk or Akt, it led to increased Stat3 Tyr705 phosphorylation and Stat3 transcriptional activity, and SgK223 and Stat3 associated in vivo. SgK223-overexpressing cells exhibited increased JAK1 activation, and use of selective inhibitors determined that the increased Stat3 signaling driven by SgK223 was JAK-dependent. Pharmacological inhibition of Stat3 revealed that Stat3 activation was required for the enhanced motility and invasion of SgK223-overexpressing cells. CONCLUSIONS: Increased expression of SgK223 occurs in PDAC, and overexpression of SgK223 in pancreatic ductal epithelial cells promotes acquisition of a migratory and invasive phenotype through enhanced JAK1/Stat3 signaling. This represents the first association of SgK223 with a particular human cancer, and links SgK223 with a major signaling pathway strongly implicated in PDAC progression.


Assuntos
Carcinoma Ductal Pancreático/genética , Proteínas de Transporte/genética , Janus Quinase 1/genética , Fator de Transcrição STAT3/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Janus Quinase 1/biossíntese , Invasividade Neoplásica/genética , Ductos Pancreáticos/patologia , Fator de Transcrição STAT3/biossíntese , Transdução de Sinais
2.
Cancer Res ; 73(6): 1969-80, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23378338

RESUMO

Basal breast cancer cells feature high expression of the Src family kinase Lyn that has been implicated in the pathogenicity of this disease. In this study, we identified novel Lyn kinase substrates, the most prominent of which was the atypical kinase SgK269 (PEAK1). In breast cancer cells, SgK269 expression associated with the basal phenotype. In primary breast tumors, SgK269 overexpression was detected in a subset of basal, HER2-positive, and luminal cancers. In immortalized MCF-10A mammary epithelial cells, SgK269 promoted transition to a mesenchymal phenotype and increased cell motility and invasion. Growth of MCF-10A acini in three-dimensional (3D) culture was enhanced upon SgK269 overexpression, which induced an abnormal, multilobular acinar morphology and promoted extracellular signal-regulated kinase (Erk) and Stat3 activation. SgK269 Y635F, mutated at a major Lyn phosphorylation site, did not enhance acinar size or cellular invasion. We show that Y635 represents a Grb2-binding site that promotes both Stat3 and Erk activation in 3D culture. RNA interference-mediated attenuation of SgK269 in basal breast cancer cells promoted acquisition of epithelial characteristics and decreased anchorage-independent growth. Together, our results define a novel signaling pathway in basal breast cancer involving Lyn and SgK269 that offers clinical opportunities for therapeutic intervention.


Assuntos
Neoplasias da Mama/enzimologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Neoplasias da Mama/patologia , Divisão Celular , Linhagem Celular Tumoral , Feminino , Humanos , Microscopia de Fluorescência , Invasividade Neoplásica , Fosforilação , Reação em Cadeia da Polimerase
3.
BMC Cancer ; 12: 395, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22958871

RESUMO

BACKGROUND: The receptor tyrosine kinase RON exhibits increased expression during pancreatic cancer progression and promotes migration, invasion and gemcitabine resistance of pancreatic cancer cells in experimental models. However, the prognostic significance of RON expression in pancreatic cancer is unknown. METHODS: RON expression was characterized in several large cohorts, including a prospective study, totaling 492 pancreatic cancer patients and relationships with patient outcome and clinico-pathologic variables were assessed. RESULTS: RON expression was associated with outcome in a training set, but this was not recapitulated in the validation set, nor was there any association with therapeutic responsiveness in the validation set or the prospective study. CONCLUSIONS: Although RON is implicated in pancreatic cancer progression in experimental models, and may constitute a therapeutic target, RON expression is not associated with prognosis or therapeutic responsiveness in resected pancreatic cancer.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/análise , Neoplasias Pancreáticas/metabolismo , Receptores Proteína Tirosina Quinases/biossíntese , Adenocarcinoma/mortalidade , Adenocarcinoma/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/cirurgia , Prognóstico , Modelos de Riscos Proporcionais , Receptores Proteína Tirosina Quinases/análise , Análise Serial de Tecidos
4.
J Biol Chem ; 286(7): 5204-14, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21147769

RESUMO

Yeast cells begin to bud and enter the S phase when growth conditions are favorable during the G(1) phase. When subjected to some oxidative stresses, cells delay entry at G(1), allowing repair of cellular damage. Hence, oxidative stress sensing is coordinated with the regulation of cell cycle. We identified a novel function of the cell cycle regulator of Saccharomyces cerevisiae, Swi6p, as a redox sensor through its cysteine residue at position 404. When alanine was substituted at this position, the resultant mutant, C404A, was sensitive to several reactive oxygen species and oxidants including linoleic acid hydroperoxide, the superoxide anion, and diamide. This mutant lost the ability to arrest in G(1) phase upon treatment with lipid hydroperoxide. The Cys-404 residue of Swi6p in wild-type cells was oxidized to a sulfenic acid when cells were subjected to linoleic acid hydroperoxide. Mutation of Cys-404 to Ala abolished the down-regulation of expression of the G(1) cyclin genes CLN1, CLN2, PCL1, and PCL2 that occurred when cells of the wild type were exposed to the lipid hydroperoxide. In conclusion, oxidative stress signaling for cell cycle regulation occurs through oxidation of the G(1)/S-specific transcription factor Swi6p and consequently leads to suppression of the expression of G(1) cyclins and a delay in cells entering the cell cycle.


Assuntos
Fase G1/fisiologia , Estresse Oxidativo/fisiologia , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Ciclinas , Cisteína/genética , Cisteína/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Peróxidos Lipídicos/metabolismo , Mutação de Sentido Incorreto , Oxirredução , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
5.
Mol Cell Biol ; 30(21): 5057-70, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20805359

RESUMO

The cortactin oncoprotein is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC), often due to amplification of the encoding gene (CTTN). While cortactin overexpression enhances invasive potential, recent research indicates that it also promotes cell proliferation, but how cortactin regulates the cell cycle machinery is unclear. In this article we report that stable short hairpin RNA-mediated cortactin knockdown in the 11q13-amplified cell line FaDu led to increased expression of the Cip/Kip cyclin-dependent kinase inhibitors (CDKIs) p21(WAF1/Cip1), p27(Kip1), and p57(Kip2) and inhibition of S-phase entry. These effects were associated with increased binding of p21(WAF1/Cip1) and p27(Kip1) to cyclin D1- and E1-containing complexes and decreased retinoblastoma protein phosphorylation. Cortactin regulated expression of p21(WAF1/Cip1) and p27(Kip1) at the transcriptional and posttranscriptional levels, respectively. The direct roles of p21(WAF1/Cip1), p27(Kip1), and p57(Kip2) downstream of cortactin were confirmed by the transient knockdown of each CDKI by specific small interfering RNAs, which led to partial rescue of cell cycle progression. Interestingly, FaDu cells with reduced cortactin levels also exhibited a significant diminution in RhoA expression and activity, together with decreased expression of Skp2, a critical component of the SCF ubiquitin ligase that targets p27(Kip1) and p57(Kip2) for degradation. Transient knockdown of RhoA in FaDu cells decreased expression of Skp2, enhanced the level of Cip/Kip CDKIs, and attenuated S-phase entry. These findings identify a novel mechanism for regulation of proliferation in 11q13-amplified HNSCC cells, in which overexpressed cortactin acts via RhoA to decrease expression of Cip/Kip CDKIs, and highlight Skp2 as a downstream effector for RhoA in this process.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/fisiopatologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Cortactina/genética , Cortactina/fisiologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/fisiologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/fisiopatologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/fisiologia , Sequência de Bases , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos Par 11/genética , Cortactina/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Inibidor de Quinase Dependente de Ciclina p27 , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/fisiologia , Primers do DNA/genética , Amplificação de Genes , Expressão Gênica , Técnicas de Silenciamento de Genes , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...