Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 300: 107077, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515949

RESUMO

Gold nanoparticles are valuable photothermal agents owing to their efficient photothermal conversion, photobleaching resistance, and potential surface functionalization. Herein, we combined bioinspired membranes with in vitro assays to elicit the molecular mechanisms of gold shell-isolated nanoparticles (AuSHINs) on ductal mammary carcinoma cells (BT-474). Langmuir and Langmuir-Schaefer (LS) films were handled to build biomembranes from BT-474 lipid extract. AuSHINs incorporation led to surface pressure-area (π-A) isotherms expansion, increasing membrane flexibility. Fourier-transform infrared spectroscopy (FTIR) of LS multilayers revealed electrostatic AuSHINs interaction with head portions of BT-474 lipid extract, causing lipid chain disorganization. Limited AuSHINs insertion into monolayer contributed to hydroperoxidation of the unsaturated lipids upon irradiation, consistently with the surface area increments of ca. 2.0%. In fact, membrane disruption of irradiated BT-474 cells containing AuSHINs was confirmed by confocal microscopy and LDH leakage, with greater damage at 2.2 × 1013 AuSHINs/mL. Furthermore, the decrease in nuclei dimensions indicates cell death through photoinduced damage.


Assuntos
Carcinoma , Nanopartículas Metálicas , Nanopartículas , Humanos , Ouro/química , Nanopartículas/química , Linhagem Celular Tumoral , Lipídeos
2.
Phys Med Biol ; 55(20): 6039-52, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20858923

RESUMO

Image-guided radiation treatments (IGRT) routinely utilize radio-opaque implantable devices, such as fiducials or brachytherapy spacers, for improved spatial accuracy. The therapeutic efficiency of IGRT can be further enhanced by biological in situ dose painting (BIS-IGRT) of radiosensitizers through localized delivery within the tumor using gold fiducial markers that have been coated with nanoporous polymer matrices loaded with nanoparticles (NPs). In this work, two approaches were studied: (i) a free drug release system consisting of Doxorubicin (Dox), a hydrophilic drug, loaded into a non-degradable polymer poly(methyl methacrylate) (PMMA) coating and (ii) poly(d,l-lactic-co-glycolic acid) (PLGA) NPs loaded with fluorescent Coumarin-6, serving as a model for a hydrophobic drug, in a biodegradable chitosan matrix. Temporal release kinetics measurements in buffer were carried out using fluorescence spectroscopy. In the first case of free Dox release, an initial release within the first few hours was followed by a sustained release over the course of the next 3 months. In the second platform, release of NPs and the free drug was controlled by the degradation rate of the chitosan matrix and PLGA. The results show that dosage and rate of release of these radiosensitizers coated on gold fiducials for IGRT can be precisely tailored to achieve the desired release profile for radiation therapy of cancer.


Assuntos
Portadores de Fármacos/química , Marcadores Fiduciais , Ouro/química , Nanopartículas/química , Radiossensibilizantes/química , Planejamento da Radioterapia Assistida por Computador/normas , Quitosana/química , Doxorrubicina/química , Humanos , Cinética , Polimetil Metacrilato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...