Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 12(10): 1271-1281, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31325763

RESUMO

PURPOSE: The purpose of this study was to develop computational algorithms to best determine tumor responses early after the start of neoadjuvant chemotherapy, based on quantitative ultrasound (QUS) and textural analysis in patients with locally advanced breast cancer (LABC). METHODS: A total of 100 LABC patients treated with neoadjuvant chemotherapy were included in this study. Breast tumors were scanned with a clinical ultrasound system prior to treatment, during the first, fourth and eighth weeks of treatment, and prior to surgery. QUS parameters were calculated from ultrasound radio frequency data within tumor regions. Texture features were extracted from each QUS parametric map. Patients were classified into two groups based on identified clinical/pathological response: responders and non-responders. In order to differentiate treatment responders, three multi-feature response classification algorithms, namely a linear discriminant, a k-nearest-neighbor and a nonlinear support vector machine classifier were compared. RESULTS: All algorithms distinguished responders and non-responders with accuracies ranging between 68% and 92%. In particular, support vector machine performed the best in differentiating responders from non-responders with accuracies of 78%, 90% and 92% at weeks 1, 4 and 8 after the start of treatment, respectively. The most relevant features in separating the two response groups at early stages (weeks 1and 4) were texture features and at a later stage (week 8) were mean QUS parameters, particularly ultrasound backscatter intensity-based parameters. CONCLUSION: An early stage treatment response prediction model developed by quantitative ultrasound and texture analysis combined with modern computational methods permits offering effective alternatives to standard treatment for refractory patients.

2.
Oncotarget ; 10(39): 3910-3923, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31231468

RESUMO

We demonstrate the clinical utility of combining quantitative ultrasound (QUS) imaging of the breast with an artificial neural network (ANN) classifier to predict the response of breast cancer patients to neoadjuvant chemotherapy (NAC) administration prior to the start of treatment. Using a 6 MHz ultrasound system, radiofrequency (RF) ultrasound data were acquired from 100 patients with biopsy-confirmed locally advanced breast cancer prior to the start of NAC. Quantitative ultrasound mean parameter intensity and texture features were computed from the tumour core and margin, and were compared to the clinical/pathological response and 5-year recurrence-free survival (RFS) of patients. A multi-parametric QUS model in conjunction with an ANN classifier predicted patient response with 96 ± 6% accuracy, and a 0.96 ± 0.08 area under the receiver operating characteristic curve (AUC), compared to 65 ± 10 % accuracy and 0.67 ± 0.14 AUC achieved using a K-Nearest Neighbour (KNN) algorithm. A separate ANN model predicted patient RFS with 85 ± 7% accuracy, and a 0.89 ± 0.11 AUC, whereas the KNN methodology achieved a 58 ± 6 % accuracy and a 0.64 ± 0.09 AUC. The application of ANN for classifying patient response based on tumour QUS features performs well in terms of predicting response to chemotherapy. The findings here provide a framework for developing personalized a priori chemotherapy selection for patients that are candidates for NAC, potentially resulting in improved patient treatment outcomes and prognosis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29994306

RESUMO

OBJECTIVE: A computer-assisted technology has recently been proposed for the assessment of therapeutic responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer (LABC). The system, however, extracted features from individual scans in a tumor irrespective of its relation to the other scans of the same patient, ignoring the volumetric information. This study addresses this problem by introducing a novel engineered texton-based method in order to account for volumetric information in the design of textural descriptors to represent tumor scans. METHODS: A noninvasive computer-aided-theragnosis (CAT) system was developed by employing multiparametric QUS spectral and backscatter coefficient maps. The proceeding was composed of two subdictionaries: one built on the "pretreatment" and another on "week " scans, where was 1, 4, or 8. The learned dictionary of each patient was subsequently used to compute the model (histogram of textons) for each scan of the patient. Advanced machine learning techniques including a kernel-based dissimilarity measure to estimate the distances between "pretreatment" and "mid-treatment" scans as an indication of treatment effectiveness, learning from imbalanced data, and supervised learning were subsequently employed on the texton-based features. RESULTS: The performance of the CAT system was tested using statistical tests of significance and leave-one-subject-out (LOSO) classification on 56 LABC patients. The proposed texton-based CAT system indicated significant differences in changes between the responding and nonresponding patient populations and achieved high accuracy, sensitivity, and specificity in discriminating between the two patient groups early after the start of treatment, i.e., on weeks 1 and 4 of several months of treatment. Specifically, the CAT system achieved the area under curve of 0.81, 0.83, and 0.85 on weeks 1, 4, and 8, respectively. CONCLUSION: The proposed texton-based CAT system accounted for the volumetric information in "pretreatment" and "mid-treatment" scans of each patient. It was demonstrated that this attribute of the CAT system could boost its performance compared to the cases that the features were extracted from solely individual scans.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Interpretação de Imagem Assistida por Computador/métodos , Medicina de Precisão/métodos , Feminino , Humanos , Terapia Neoadjuvante , Ultrassonografia
4.
PLoS One ; 13(1): e0189634, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29298305

RESUMO

BACKGROUND: Pathological response of breast cancer to chemotherapy is a prognostic indicator for long-term disease free and overall survival. Responses of locally advanced breast cancer in the neoadjuvant chemotherapy (NAC) settings are often variable, and the prediction of response is imperfect. The purpose of this study was to detect primary tumor responses early after the start of neoadjuvant chemotherapy using quantitative ultrasound (QUS), textural analysis and molecular features in patients with locally advanced breast cancer. METHODS: The study included ninety six patients treated with neoadjuvant chemotherapy. Breast tumors were scanned with a clinical ultrasound system prior to chemotherapy treatment, during the first, fourth and eighth week of treatment, and prior to surgery. Quantitative ultrasound parameters and scatterer-based features were calculated from ultrasound radio frequency (RF) data within tumor regions of interest. Additionally, texture features were extracted from QUS parametric maps. Prior to therapy, all patients underwent a core needle biopsy and histological subtypes and biomarker ER, PR, and HER2 status were determined. Patients were classified into three treatment response groups based on combination of clinical and pathological analyses: complete responders (CR), partial responders (PR), and non-responders (NR). Response classifications from QUS parameters, receptors status and pathological were compared. Discriminant analysis was performed on extracted parameters using a support vector machine classifier to categorize subjects into CR, PR, and NR groups at all scan times. RESULTS: Of the 96 patients, the number of CR, PR and NR patients were 21, 52, and 23, respectively. The best prediction of treatment response was achieved with the combination mean QUS values, texture and molecular features with accuracies of 78%, 86% and 83% at weeks 1, 4, and 8, after treatment respectively. Mean QUS parameters or clinical receptors status alone predicted the three response groups with accuracies less than 60% at all scan time points. Recurrence free survival (RFS) of response groups determined based on combined features followed similar trend as determined based on clinical and pathology. CONCLUSIONS: This work demonstrates the potential of using QUS, texture and molecular features for predicting the response of primary breast tumors to chemotherapy early, and guiding the treatment planning of refractory patients.


Assuntos
Neoplasias da Mama/patologia , Terapia Neoadjuvante , Adolescente , Adulto , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Adulto Jovem
5.
Sci Rep ; 7(1): 10352, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871171

RESUMO

Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis.


Assuntos
Variação Biológica da População , Neoplasias da Mama/diagnóstico , Ultrassonografia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Biópsia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Canadá/epidemiologia , Quimioterapia Adjuvante , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Resultado do Tratamento , Carga Tumoral , Ultrassonografia/métodos
6.
Methods Mol Biol ; 1644: 23-40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28710751

RESUMO

High-frequency ultrasound (>20 MHz) spectroscopy can be used to detect noninvasively DNA damage in cell samples in vitro, and in live tissue both ex vivo and in vivo. This chapter focuses on the former two aspects. Experimental evidence suggests that morphological changes that occur in cells undergoing apoptosis result in changes in frequency-dependent ultrasound backscatter. With advances in research, ultrasound spectroscopy is advancing the boundaries of fast, label-free, noninvasive DNA damage detection technology with potential use in personalized medicine and early therapy response monitoring. Depending on the desired resolution, parametric ultrasound images can be computed and displayed within minutes to hours after ultrasound examination for cell death.


Assuntos
Encéfalo/diagnóstico por imagem , Dano ao DNA , Ultrassonografia/métodos , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Neoplasias Laríngeas/diagnóstico por imagem , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , Leucemia Mieloide Aguda/diagnóstico por imagem , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Ratos , Ratos Endogâmicos F344 , Células Tumorais Cultivadas
7.
Methods Mol Biol ; 1644: 41-60, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28710752

RESUMO

In this chapter, we describe two new methodologies: (1) application of high-frequency ultrasound spectroscopy for in vivo detection of cancer cell death in small animal models, and (2) extension of ultrasound spectroscopy to the lower frequency range (i.e., 1-10 MHz range) for the detection of cell death in vivo in preclinical and clinical settings. Experiments using tumor xenografts in mice and cancer treatments based on chemotherapy are described. Finally, we describe how one can detect cancer response to treatment in patients noninvasively early (within 1 week of treatment initiation) using low-frequency ultrasound spectroscopic imaging and advanced machine learning techniques. Color-coded images of ultrasound spectroscopic parameters, or parametric images, permit the delineation of areas of dead cells versus viable cells using high ultrasound frequencies, and the delineation of areas of therapy response in patient tumors using clinically relevant ultrasound frequencies. Depending on the desired resolution, parametric ultrasound images can be computed and displayed within minutes to hours after ultrasound examination for cell death. A noninvasive and express method of cancer response detection using ultrasound spectroscopy provides a framework for personalized medicine with regards to the treatment planning of refractory patients resulting in substantial improvements in patient survival.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Ultrassonografia/métodos , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Rep ; 7: 45733, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401902

RESUMO

Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Ultrassonografia , Adulto , Quimioterapia Adjuvante , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Resultado do Tratamento
10.
Oncoscience ; 3(3-4): 122-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226985

RESUMO

BACKGROUND AND AIMS: Quantitative ultrasound (QUS) was investigated to monitor bladder cancer treatment response in vivo and to evaluate tumor cell death from combined treatments using ultrasound-stimulated microbubbles and radiation therapy. METHODS: Tumor-bearing mice (n=45), with bladder cancer xenografts (HT- 1376) were exposed to 9 treatment conditions consisting of variable concentrations of ultrasound-stimulated Definity microbubbles [nil, low (1%), high (3%)], combined with single fractionated doses of radiation (0 Gy, 2 Gy, 8 Gy). High frequency (25 MHz) ultrasound was used to collect the raw radiofrequency (RF) data of the backscatter signal from tumors prior to, and 24 hours after treatment in order to obtain QUS parameters. The calculated QUS spectral parameters included the mid-band fit (MBF), and 0-MHz intercept (SI) using a linear regression analysis of the normalized power spectrum. RESULTS AND CONCLUSIONS: There were maximal increases in QUS parameters following treatments with high concentration microbubbles combined with 8 Gy radiation: (ΔMBF = +6.41 ± 1.40 (±SD) dBr and SI= + 7.01 ± 1.20 (±SD) dBr. Histological data revealed increased cell death, and a reduction in nuclear size with treatments, which was mirrored by changes in quantitative ultrasound parameters. QUS demonstrated markers to detect treatment effects in bladder tumors in vivo.

11.
Oncotarget ; 7(29): 45094-45111, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27105515

RESUMO

PURPOSE: This study demonstrated the ability of quantitative ultrasound (QUS) parameters in providing an early prediction of tumor response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC). METHODS: Using a 6-MHz array transducer, ultrasound radiofrequency (RF) data were collected from 58 LABC patients prior to NAC treatment and at weeks 1, 4, and 8 of their treatment, and prior to surgery. QUS parameters including midband fit (MBF), spectral slope (SS), spectral intercept (SI), spacing among scatterers (SAS), attenuation coefficient estimate (ACE), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined from the tumor region of interest. Ultrasound data were compared with the ultimate clinical and pathological response of the patient's tumor to treatment and patient recurrence-free survival. RESULTS: Multi-parameter discriminant analysis using the κ-nearest-neighbor classifier demonstrated that the best response classification could be achieved using the combination of MBF, SS, and SAS, with an accuracy of 60 ± 10% at week 1, 77 ± 8% at week 4 and 75 ± 6% at week 8. Furthermore, when the QUS measurements at each time (week) were combined with pre-treatment (week 0) QUS values, the classification accuracies improved (70 ± 9% at week 1, 80 ± 5% at week 4, and 81 ± 6% at week 8). Finally, the multi-parameter QUS model demonstrated a significant difference in survival rates of responding and non-responding patients at weeks 1 and 4 (p=0.035, and 0.027, respectively). CONCLUSION: This study demonstrated for the first time, using new parameters tested on relatively large patient cohort and leave-one-out classifier evaluation, that a hybrid QUS biomarker including MBF, SS, and SAS could, with relatively high sensitivity and specificity, detect the response of LABC tumors to NAC as early as after 4 weeks of therapy. The findings of this study also suggested that incorporating pre-treatment QUS parameters of a tumor improved the classification results. This work demonstrated the potential of QUS and machine learning methods for the early assessment of breast tumor response to NAC and providing personalized medicine with regards to the treatment planning of refractory patients.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Aprendizado de Máquina , Ultrassonografia Mamária/métodos , Adulto , Idoso , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Sensibilidade e Especificidade
12.
Oncotarget ; 7(15): 19762-80, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26942698

RESUMO

PURPOSE: This study evaluated pathological response to neoadjuvant chemotherapy using quantitative ultrasound (QUS) and diffuse optical spectroscopy imaging (DOSI) biomarkers in locally advanced breast cancer (LABC). MATERIALS AND METHODS: The institution's ethics review board approved this study. Subjects (n = 22) gave written informed consent prior to participating. US and DOSI data were acquired, relative to the start of neoadjuvant chemotherapy, at weeks 0, 1, 4, 8 and preoperatively. QUS parameters including the mid-band fit (MBF), 0-MHz intercept (SI), and the spectral slope (SS) were determined from tumor ultrasound data using spectral analysis. In the same patients, DOSI was used to measure parameters relating to tumor hemoglobin and composition. Discriminant analysis and receiver-operating characteristic (ROC) analysis was used to classify clinical and pathological response during treatment and to estimate the area under the curve (AUC). Additionally, multivariate analysis was carried out for pairwise QUS/DOSI parameter combinations using a logistic regression model. RESULTS: Individual QUS and DOSI parameters, including the (SI), oxy-hemoglobin (HbO2), and total hemoglobin (HbT) were significant markers for response after one week of treatment (p < 0.01). Multivariate (pairwise) combinations increased the sensitivity, specificity and AUC at this time; the SI + HbO2 showed a sensitivity/specificity of 100%, and an AUC of 1.0. CONCLUSIONS: QUS and DOSI demonstrated potential as coincident markers for treatment response and may potentially facilitate response-guided therapies. Multivariate QUS and DOSI parameters increased the sensitivity and specificity of classifying LABC patients as early as one week after treatment.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Monitorização Fisiológica/métodos , Avaliação de Resultados em Cuidados de Saúde/métodos , Adulto , Idoso , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Feminino , Hemoglobinas/análise , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Análise Multivariada , Imagem Óptica/métodos , Curva ROC , Reprodutibilidade dos Testes , Análise Espectral/métodos , Ultrassonografia/métodos
13.
IEEE Trans Med Imaging ; 35(3): 778-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26529750

RESUMO

A noninvasive computer-aided-theragnosis (CAT) system was developed for the early therapeutic cancer response assessment in patients with locally advanced breast cancer (LABC) treated with neoadjuvant chemotherapy. The proposed CAT system was based on multi-parametric quantitative ultrasound (QUS) spectroscopic methods in conjunction with advanced machine learning techniques. Specifically, a kernel-based metric named maximum mean discrepancy (MMD), a technique for learning from imbalanced data based on random undersampling, and supervised learning were investigated with response-monitoring data from LABC patients. The CAT system was tested on 56 patients using statistical significance tests and leave-one-subject-out classification techniques. Textural features using state-of-the-art local binary patterns (LBP), and gray-scale intensity features were extracted from the spectral parametric maps in the proposed CAT system. The system indicated significant differences in changes between the responding and non-responding patient populations as well as high accuracy, sensitivity, and specificity in discriminating between the two patient groups early after the start of treatment, i.e., on weeks 1 and 4 of several months of treatment. The proposed CAT system achieved an accuracy of 85%, 87%, and 90% on weeks 1, 4 and 8, respectively. The sensitivity and specificity of developed CAT system for the same times was 85%, 95%, 90% and 85%, 85%, 91%, respectively. The proposed CAT system thus establishes a noninvasive framework for monitoring cancer treatment response in tumors using clinical ultrasound imaging in conjunction with machine learning techniques. Such a framework can potentially facilitate the detection of refractory responses in patients to treatment early on during a course of therapy to enable possibly switching to more efficacious treatments.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Análise Espectral/métodos , Ultrassonografia/métodos , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Pessoa de Meia-Idade , Sensibilidade e Especificidade
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3227-3230, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268995

RESUMO

A new framework has been introduced in this paper for tumor radiosensitization and therapy response monitoring using low-frequency ultrasound. Human fibrosarcoma xenografts grown in severe combined immunodeficiency (SCID) mice (n = 108) were treated using ultrasound-stimulated microbubbles at various concentration and exposed to different doses of radiation. Low-frequency ultrasound radiofrequency (RF) data were acquired from tumors prior to and at different times after treatment. Quantitative ultrasound (QUS) techniques were applied to generate spectral parametric maps of tumors. Textural analysis were performed to quantify spatial heterogeneities within QUS parametric maps. A hybrid model was developed using multiple regression analysis to predict extent of histological tumor cell death non-invasively based on QUS spectral and textural biomarkers. Results of immunohistochemistry on excised tumor sections demonstrated increases in cell death with higher concentration of microbubbles and radiation dose. Quantitative ultrasound results indicated changes that paralleled increases in histological cell death. Specifically, the hybrid QUS biomarker demonstrated a good correlation with extent of tumor cell death observed from immunohistochemistry. A linear discriminant analysis applied in conjunction with the receiver operating characteristic (ROC) curve analysis indicated that the hybrid QUS biomarker can classify tumor cell death fractions with an area under the curve of 91.2. The results obtained in this research suggest that low-frequency ultrasound can concurrently be used to enhance radiation therapy and evaluate tumor response to treatment.


Assuntos
Fibrossarcoma/diagnóstico por imagem , Fibrossarcoma/patologia , Monitorização Fisiológica , Tolerância a Radiação , Ultrassonografia/métodos , Animais , Biomarcadores Tumorais/metabolismo , Morte Celular , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Microbolhas , Curva ROC , Análise de Regressão
15.
Transl Oncol ; 8(6): 463-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26692527

RESUMO

INTRODUCTION: Quantitative ultrasound parameters based on form factor models were investigated as potential biomarkers of cell death in breast tumor (MDA-231) xenografts treated with chemotherapy. METHODS: Ultrasound backscatter radiofrequency data were acquired from MDA-231 breast cancer tumor-bearing mice (n = 20) before and after the administration of chemotherapy drugs at two ultrasound frequencies: 7 MHz and 20 MHz. Radiofrequency spectral analysis involved estimating the backscatter coefficient from regions of interest in the center of the tumor, to which form factor models were fitted, resulting in estimates of average scatterer diameter and average acoustic concentration (AAC). RESULTS: The ∆AAC parameter extracted from the spherical Gaussian model was found to be the most effective cell death biomarker (at the lower frequency range, r(2) = 0.40). At both frequencies, AAC in the treated tumors increased significantly (P = .026 and .035 at low and high frequencies, respectively) 24 hours after treatment compared with control tumors. Furthermore, stepwise multiple linear regression analysis of the low-frequency data revealed that a multiparameter quantitative ultrasound model was strongly correlated to cell death determined histologically posttreatment (r(2) = 0.74). CONCLUSION: The Gaussian form factor model-based scattering parameters can potentially be used to track the extent of cell death at clinically relevant frequencies (7 MHz). The 20-MHz results agreed with previous findings in which parameters related to the backscatter intensity (i.e., AAC) increased with cell death. The findings suggested that, in addition to the backscatter coefficient parameter ∆AAC, biological features including tumor heterogeneity and initial tumor volume were important factors in the prediction of cell death response.

16.
Med Image Anal ; 20(1): 224-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25534283

RESUMO

Tumor response to neoadjuvant chemotherapy in patients (n=30) with locally advanced breast cancer (LABC) was examined using quantitative ultrasound. Three ultrasound backscatter parameters, the integrated backscatter coefficient (IBC), average scatterer diameter (ASD), and average acoustic concentration (AAC), were estimated from tumors prior to treatment and at four times during neoadjuvant chemotherapy treatment (weeks 0, 1, 4, 8, and prior to surgery) and compared to ultimate clinical and pathological tumor responses. Results demonstrated that among all parameters, AAC was the best indicator of tumor response early after starting treatment. The AAC parameter increased substantially in treatment-responding patients as early as one week after treatment initiation, further increased at week 4, and attained a maximum at week 8. In contrast, the backscatter parameters from non-responders did not show any changes after treatment initiation. The two patient populations exhibited a statistically significant difference in changes of AAC (p<0.001) and ASD (p=0.023) over all treatment times examined. The best prediction of treatment response was achieved with the combination of AAC and ASD at week 4 (82% sensitivity, 100% specificity, and 86% accuracy) of 12-18 weeks of treatment. The survival of patients with responsive ultrasound parameters was higher than patients with non-responsive ultrasound parameters (35 ± 11 versus 27 ± 11 months, respectively, p=0.043). This study demonstrates that ultrasound parameters derived from the ultrasound backscattered power spectrum can potentially serve as non-invasive early measures of clinical tumor response to chemotherapy treatments.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Monitoramento Ambiental , Feminino , Humanos , Terapia Neoadjuvante , Sensibilidade e Especificidade , Fatores de Tempo , Ultrassonografia
17.
Transl Oncol ; 7(6): 759-67, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25500086

RESUMO

PURPOSE: The identification of tumor pathologic characteristics is an important part of breast cancer diagnosis, prognosis, and treatment planning but currently requires biopsy as its standard. Here, we investigated a noninvasive quantitative ultrasound method for the characterization of breast tumors in terms of their histologic grade, which can be used with clinical diagnostic ultrasound data. METHODS: Tumors of 57 locally advanced breast cancer patients were analyzed as part of this study. Seven quantitative ultrasound parameters were determined from each tumor region from the radiofrequency data, including mid-band fit, spectral slope, 0-MHz intercept, scatterer spacing, attenuation coefficient estimate, average scatterer diameter, and average acoustic concentration. Parametric maps were generated corresponding to the region of interest, from which four textural features, including contrast, energy, homogeneity, and correlation, were determined as further tumor characterization parameters. Data were examined on the basis of tumor subtypes based on histologic grade (grade I versus grade II to III). RESULTS: Linear discriminant analysis of the means of the parametric maps resulted in classification accuracy of 79%. On the other hand, the linear combination of the texture features of the parametric maps resulted in classification accuracy of 82%. Finally, when both the means and textures of the parametric maps were combined, the best classification accuracy was obtained (86%). CONCLUSIONS: Textural characteristics of quantitative ultrasound spectral parametric maps provided discriminant information about different types of breast tumors. The use of texture features significantly improved the results of ultrasonic tumor characterization compared to conventional mean values. Thus, this study suggests that texture-based quantitative ultrasound analysis of in vivo breast tumors can provide complementary diagnostic information about tumor histologic characteristics.

18.
IEEE Trans Med Imaging ; 33(6): 1390-400, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24893261

RESUMO

Quantitative ultrasound (QUS) spectroscopic techniques in conjunction with maximum mean discrepancy (MMD) have been proposed to detect, and to classify noninvasively the levels of cell death in response to cancer therapy administration in tumor models. Evaluation of xenograft tumor responses to cancer treatments were carried out using conventional-frequency ultrasound at different times after chemotherapy exposure. Ultrasound data were analyzed using spectroscopic techniques and multi-parametric QUS spectral maps were generated. MMD was applied as a distance criterion, measuring alterations in each tumor in response to chemotherapy, and the extent of cell death was classified into less/more than 20% and 40% categories. Statistically significant differences were observed between "pre-" and "post-treatment" groups at different times after chemotherapy exposure, suggesting a high capability of proposed framework for detecting tumor response noninvasively. Promising results were also obtained for categorizing the extent of cell death response in each tumor using the proposed framework, with gold standard histological quantification of cell death as ground truth. The best classification results were obtained using MMD when applied on histograms of QUS parametric maps. In this case, classification accuracies of 84.7% and 88.2% were achieved for categorizing extent of tumor cell death into less/more than 20% and 40%, respectively.


Assuntos
Morte Celular/efeitos dos fármacos , Neoplasias Experimentais , Análise Espectral/métodos , Ultrassonografia/métodos , Algoritmos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos SCID , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Med Phys ; 41(1): 012903, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24387530

RESUMO

PURPOSE: Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. METHODS: Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum--midband fit, slope, and 0-MHz-intercept--were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. RESULTS: Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor grades further improved when the textural features of the effective scatterer diameter parametric map were combined with the mean value of the map (p = 0.004). CONCLUSIONS: Overall, the binary classification results (tumor versus normal tissue) were more promising than tumor grade assessment. Combinations of advanced parameters can further improve the separation of tumors from normal tissue compared to the use of linear regression parameters. While the linear regression parameters were sufficient for characterizing breast tumors and normal breast tissues, advanced parameters and their textural features were required to better characterize tumor subtypes.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Ultrassonografia Mamária/métodos , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores
20.
Med Phys ; 40(8): 082901, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927356

RESUMO

PURPOSE: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models. METHODS: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy. RESULTS: Ultrasound-based spectroscopic biomarkers indicated significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r2=0.71, 0.82; p<0.001). CONCLUSIONS: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency, in addition to high-frequency ultrasound, can detect tissue changes associated with cell death in vivo in response to cancer treatments.


Assuntos
Ultrassonografia/métodos , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Morte Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Masculino , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA