Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651641

RESUMO

Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Células Ciliadas Auditivas , Morfogênese , Animais , Camundongos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiologia , Polaridade Celular , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética
2.
J Peripher Nerv Syst ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551018

RESUMO

BACKGROUND: Inhibition of HDAC6 has been proposed as a broadly applicable therapeutic strategy for Charcot-Marie-Tooth disease (CMT). Inhibition of HDAC6 increases the acetylation of proteins important in axonal trafficking, such as α-tubulin and Miro, and has been shown to be efficacious in several preclinical studies using mouse models of CMT. AIMS: Here, we sought to expand on previous preclinical studies by testing the effect of genetic deletion of Hdac6 on mice carrying a humanized knockin allele of Gars1, a model of CMT-type 2D. METHODS: Gars1ΔETAQ mice were bred to an Hdac6 knockout strain, and the resulting offspring were evaluated for clinically relevant outcomes. RESULTS: The genetic deletion of Hdac6 increased α-tubulin acetylation in the sciatic nerves of both wild-type and Gars1ΔETAQ mice. However, when tested at 5 weeks of age, the Gars1ΔETAQ mice lacking Hdac6 showed no changes in body weight, muscle atrophy, grip strength or endurance, sciatic motor nerve conduction velocity, compound muscle action potential amplitude, or peripheral nerve histopathology compared to Gars1ΔETAQ mice with intact Hdac6. INTERPRETATION: Our results differ from those of two previous studies that demonstrated the benefit of the HDAC6 inhibitor tubastatin A in mouse models of CMT2D. While we cannot fully explain the different outcomes, our results offer a counterexample to the benefit of inhibiting HDAC6 in CMT2D, suggesting additional research is necessary.

3.
J Neuropathol Exp Neurol ; 83(5): 318-330, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38472136

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), leading to muscle weakness and loss of sensation in the hands and feet. A recent case-only genome-wide association study of CMT1A patients conducted by the Inherited Neuropathy Consortium identified a strong association between strength of foot dorsiflexion and variants in signal induced proliferation associated 1 like 2 (SIPA1L2), indicating that it may be a genetic modifier of disease. To validate SIPA1L2 as a candidate modifier and to assess its potential as a therapeutic target, we engineered mice with deletion of exon 1 (including the start codon) of the Sipa1l2 gene and crossed them to the C3-PMP22 mouse model of CMT1A. Neuromuscular phenotyping showed that Sipa1l2 deletion in C3-PMP22 mice preserved muscular endurance assayed by inverted wire hang duration and changed femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggest involvement of Sipa1l2 in cholesterol biosynthesis, a pathway that is also implicated in C3-PMP22 mice. Although Sipa1l2 deletion did impact CMT1A-associated phenotypes, thereby validating a genetic interaction, the overall effect on neuropathy was mild.


Assuntos
Doença de Charcot-Marie-Tooth , Estudo de Associação Genômica Ampla , Animais , Camundongos , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/genética , Debilidade Muscular , Bainha de Mielina/metabolismo
4.
Brain Commun ; 6(2): fcae070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495304

RESUMO

Pathogenic variants in six aminoacyl-tRNA synthetase (ARS) genes are implicated in neurological disorders, most notably inherited peripheral neuropathies. ARSs are enzymes that charge tRNA molecules with cognate amino acids. Pathogenic variants in asparaginyl-tRNA synthetase (NARS1) cause a neurological phenotype combining developmental delay, ataxia and demyelinating peripheral neuropathy. NARS1 has not yet been linked to axonal Charcot-Marie-Tooth disease. Exome sequencing of patients with inherited peripheral neuropathies revealed three previously unreported heterozygous NARS1 variants in three families. Clinical and electrophysiological details were assessed. We further characterized all three variants in a yeast complementation model and used a knock-in mouse model to study variant p.Ser461Phe. All three variants (p.Met236del, p.Cys342Tyr and p.Ser461Phe) co-segregate with the sensorimotor axonal neuropathy phenotype. Yeast complementation assays show that none of the three NARS1 variants support wild-type yeast growth when tested in isolation (i.e. in the absence of a wild-type copy of NARS1), consistent with a loss-of-function effect. Similarly, the homozygous knock-in mouse model (p.Ser461Phe/Ser472Phe in mouse) also demonstrated loss-of-function characteristics. We present three previously unreported NARS1 variants segregating with a sensorimotor neuropathy phenotype in three families. Functional studies in yeast and mouse support variant pathogenicity. Thus, NARS1 is the seventh ARS implicated in dominant axonal Charcot-Marie-Tooth disease, further stressing that all dimeric ARSs should be evaluated for Charcot-Marie-Tooth disease.

5.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37292807

RESUMO

Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3 and GNAO proteins, but may also induce unrelated defects. Here we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner GPSM2, whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the subcellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: 1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and 2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

6.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076977

RESUMO

Charcot-Marie-Tooth 1A is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), which produces muscle weakness and loss of sensation in the hands and feet. A recent case-only genome wide association study by the Inherited Neuropathy Consortium identified a strong association between variants in signal induced proliferation associated 1 like 2 (SIPA1L2) and strength of foot dorsiflexion. To validate SIPA1L2 as a candidate modifier, and to assess its potential as a therapeutic target, we engineered mice with a deletion in SIPA1L2 and crossed them to the C3-PMP22 mouse model of CMT1A. We performed neuromuscular phenotyping and identified an interaction between Sipa1l2 deletion and muscular endurance decrements assayed by wire-hang duration in C3-PMP22 mice, as well as several interactions in femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggested an involvement of Sipa1l2 in cholesterol biosynthesis, which was also implicated in C3-PMP22 mice. Though several interactions between Sipa1l2 deletion and CMT1A-associated phenotypes were identified, validating a genetic interaction, the overall effect on neuropathy was small.

7.
Proc Natl Acad Sci U S A ; 120(44): e2313010120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878717

RESUMO

Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Doença de Charcot-Marie-Tooth/metabolismo , Células Receptoras Sensoriais/metabolismo , Mutação , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Guanosina Trifosfato/metabolismo
8.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300435

RESUMO

The Retinoid-related orphan receptor beta (RORß) gene encodes a developmental transcription factor and has 2 predominant isoforms created through alternative first exon usage; one specific to the retina and another present more broadly in the central nervous system, particularly regions involved in sensory processing. RORß belongs to the nuclear receptor family and plays important roles in cell fate specification in the retina and cortical layer formation. In mice, loss of RORß causes disorganized retina layers, postnatal degeneration, and production of immature cone photoreceptors. Hyperflexion or "high-stepping" of rear limbs caused by reduced presynaptic inhibition by Rorb-expressing inhibitory interneurons of the spinal cord is evident in RORß-deficient mice. RORß variants in patients are associated with susceptibility to various neurodevelopmental conditions, primarily generalized epilepsies, but including intellectual disability, bipolar, and autism spectrum disorders. The mechanisms by which RORß variants confer susceptibility to these neurodevelopmental disorders are unknown but may involve aberrant neural circuit formation and hyperexcitability during development. Here we report an allelic series in 5 strains of spontaneous Rorb mutant mice with a high-stepping gait phenotype. We show retinal abnormalities in a subset of these mutants and demonstrate significant differences in various behavioral phenotypes related to cognition. Gene expression analyses in all 5 mutants reveal a shared over-representation of the unfolded protein response and pathways related to endoplasmic reticulum stress, suggesting a possible mechanism of susceptibility relevant to patients.


Assuntos
Retina , Transcriptoma , Camundongos , Animais , Retina/metabolismo , Sistema Nervoso Central/metabolismo , Fenótipo , Marcha , Resposta a Proteínas não Dobradas/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
9.
J Anat ; 241(5): 1169-1185, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34875719

RESUMO

Animal models of neurodegenerative diseases such as inherited peripheral neuropathies sometimes accurately recreate the pathophysiology of the human disease, and sometimes accurately recreate the genetic perturbations found in patients. Ideally, models achieve both, but this is not always possible; nonetheless, such models are informative. Here we describe two animal models of inherited peripheral neuropathy: mice with a mutation in tyrosyl tRNA-synthetase, YarsE196K , modeling dominant intermediate Charcot-Marie-Tooth disease type C (diCMTC), and mice with a mutation in serine palmitoyltransferase long chain 1, Sptlc1C133W , modeling hereditary sensory and autonomic neuropathy type 1 (HSAN1). YarsE196K mice develop disease-relevant phenotypes including reduced motor performance and reduced nerve conduction velocities by 4 months of age. Peripheral motor axons are reduced in size, but there is no reduction in axon number and plasma neurofilament light chain levels are not increased. Unlike the dominant human mutations, the YarsE196K mice only show these phenotypes as homozygotes, or as compound heterozygotes with a null allele, and no phenotype is observed in E196K or null heterozygotes. The Sptlc1C133W mice carry a knockin allele and show the anticipated increase in 1-deoxysphingolipids in circulation and in a variety of tissues. They also have mild behavioral defects consistent with HSAN1, but do not show neurophysiological defects or axon loss in peripheral nerves or in the epidermis of the hind paw or tail. Thus, despite the biochemical phenotype, the Sptlc1C133W mice do not show a strong neuropathy phenotype. Surprisingly, these mice were lethal as homozygotes, but the heterozygous genotype studied corresponds to the dominant genetics seen in humans. Thus, YarsE196K homozygous mice have a relevant phenotype, but imprecisely reproduce the human genetics, whereas the Sptlc1C133W mice precisely reproduce the human genetics, but do not recreate the disease phenotype. Despite these shortcomings, both models are informative and will be useful for future research.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatias Hereditárias Sensoriais e Autônomas , Animais , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Ligases/genética , Camundongos , Mutação , Doenças do Sistema Nervoso Periférico , RNA de Transferência , Serina C-Palmitoiltransferase/genética
10.
Science ; 373(6559): 1161-1166, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516840

RESUMO

Heterozygous mutations in six transfer RNA (tRNA) synthetase genes cause Charcot-Marie-Tooth (CMT) peripheral neuropathy. CMT mutant tRNA synthetases inhibit protein synthesis by an unknown mechanism. We found that CMT mutant glycyl-tRNA synthetases bound tRNAGly but failed to release it, resulting in tRNAGly sequestration. This sequestration potentially depleted the cellular tRNAGly pool, leading to insufficient glycyl-tRNAGly supply to the ribosome. Accordingly, we found ribosome stalling at glycine codons and activation of the integrated stress response (ISR) in affected motor neurons. Moreover, transgenic overexpression of tRNAGly rescued protein synthesis, peripheral neuropathy, and ISR activation in Drosophila and mouse CMT disease type 2D (CMT2D) models. Conversely, inactivation of the ribosome rescue factor GTPBP2 exacerbated peripheral neuropathy. Our findings suggest a molecular mechanism for CMT2D, and elevating tRNAGly levels may thus have therapeutic potential.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Glicina-tRNA Ligase/metabolismo , RNA de Transferência de Glicina/metabolismo , Animais , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Glicina-tRNA Ligase/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , RNA de Transferência de Glicina/genética
11.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33734376

RESUMO

The final step in proline biosynthesis is catalyzed by three pyrroline-5-carboxylate reductases, PYCR1, PYCR2, and PYCR3, which convert pyrroline-5-carboxylate (P5C) to proline. Mutations in human PYCR1 and ALDH18A1 (P5C Synthetase) cause Cutis Laxa (CL), whereas mutations in PYCR2 cause hypomyelinating leukodystrophy 10 (HLD10). Here, we investigated the genetics of Pycr1 and Pycr2 in mice. A null allele of Pycr1 did not show integument or CL-related phenotypes. We also studied a novel chemically-induced mutation in Pycr2. Mice with recessive loss-of-function mutations in Pycr2 showed phenotypes consistent with neurological and neuromuscular disorders, including weight loss, kyphosis, and hind-limb clasping. The peripheral nervous system was largely unaffected, with only mild axonal atrophy in peripheral nerves. A severe loss of subcutaneous fat in Pycr2 mutant mice is reminiscent of a CL-like phenotype, but primary features such as elastin abnormalities were not observed. Aged Pycr2 mutant mice had reduced white blood cell counts and altered lipid metabolism, suggesting a generalized metabolic disorder. PYCR1 and -2 have similar enzymatic and cellular activities, and consistent with previous studies, both were localized in the mitochondria in fibroblasts. Both PYCR1 and -2 were able to complement the loss of Pro3, the yeast enzyme that converts P5C to proline, confirming their activity as P5C reductases. In mice, Pycr1; Pycr2 double mutants were sub-viable and unhealthy compared to either single mutant, indicating the genes are largely functionally redundant. Proline levels were not reduced, and precursors were not increased in serum from Pycr2 mutant mice or in lysates from skin fibroblast cultures, but placing Pycr2 mutant mice on a proline-free diet worsened the phenotype. Thus, Pycr1 and -2 have redundant functions in proline biosynthesis, and their loss makes proline a semi-essential amino acid. These findings have implications for understanding the genetics of CL and HLD10, and for modeling these disorders in mice.


Assuntos
Prolina/biossíntese , Pirrolina Carboxilato Redutases/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Prolina/química , Prolina/genética , Pirrolina Carboxilato Redutases/metabolismo
12.
J Immunol ; 205(8): 2026-2038, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938729

RESUMO

It has become increasingly appreciated that autoimmune responses against neuronal components play an important role in type 1 diabetes (T1D) pathogenesis. In fact, a large proportion of islet-infiltrating B lymphocytes in the NOD mouse model of T1D produce Abs directed against the neuronal type III intermediate filament protein peripherin. NOD-PerIg mice are a previously developed BCR-transgenic model in which virtually all B lymphocytes express the H and L chain Ig molecules from the intra-islet-derived anti-peripherin-reactive hybridoma H280. NOD-PerIg mice have accelerated T1D development, and PerIg B lymphocytes actively proliferate within islets and expand cognitively interactive pathogenic T cells from a pool of naive precursors. We now report adoptively transferred T cells or whole splenocytes from NOD-PerIg mice expectedly induce T1D in NOD.scid recipients but, depending on the kinetics of disease development, can also elicit a peripheral neuritis (with secondary myositis). This neuritis was predominantly composed of CD4+ and CD8+ T cells. Ab depletion studies showed neuritis still developed in the absence of NOD-PerIg CD8+ T cells but required CD4+ T cells. Surprisingly, sciatic nerve-infiltrating CD4+ cells had an expansion of IFN-γ- and TNF-α- double-negative cells compared with those within both islets and spleen. Nerve and islet-infiltrating CD4+ T cells also differed by expression patterns of CD95, PD-1, and Tim-3. Further studies found transitory early B lymphocyte depletion delayed T1D onset in a portion of NOD-PerIg mice, allowing them to survive long enough to develop neuritis outside of the transfer setting. Together, this study presents a new model of peripherin-reactive B lymphocyte-dependent autoimmune neuritis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Tecido Nervoso , Neurite Autoimune Experimental , Pâncreas , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Tecido Nervoso/imunologia , Tecido Nervoso/patologia , Neurite Autoimune Experimental/genética , Neurite Autoimune Experimental/imunologia , Neurite Autoimune Experimental/patologia , Pâncreas/imunologia , Pâncreas/patologia
13.
Mamm Genome ; 30(5-6): 111-122, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30953144

RESUMO

The promise of personalized medicine is that each patient's treatment can be optimally tailored to their disease. In turn, their disease, as well as their response to the treatment, is determined by their genetic makeup and the "environment," which relates to their general health, medical history, personal habits, and surroundings. Developing such optimized treatment strategies is an admirable goal and success stories include examples such as switching chemotherapy agents based on a patient's tumor genotype. However, it remains a challenge to apply precision medicine to diseases for which there is no known effective treatment. Such diseases require additional research, often using experimentally tractable models. Presumably, models that recapitulate as much of the human pathophysiology as possible will be the most predictive. Here we will discuss the considerations behind such "precision models." What sort of precision is required and under what circumstances? How can the predictive validity of such models be improved? Ultimately, there is no perfect model, but our continually improving ability to genetically engineer a variety of systems allows the generation of more and more precise models. Furthermore, our steadily increasing awareness of risk alleles, genetic background effects, multifactorial disease processes, and gene by environment interactions also allows increasingly sophisticated models that better reproduce patients' conditions. In those cases where the research has progressed sufficiently far, results from these models appear to often be translating to effective treatments for patients.


Assuntos
Modelagem Computacional Específica para o Paciente , Medicina de Precisão , Animais , Modelos Animais de Doenças , Patrimônio Genético , Terapia Genética , Humanos , Fenótipo , Reprodutibilidade dos Testes
14.
Curr Biol ; 29(6): 921-934.e4, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30827920

RESUMO

The transduction compartment of inner ear hair cells, the hair bundle, is composed of stereocilia rows of graded height, a property essential for sensory function that remains poorly understood at the molecular level. We previously showed that GPSM2-GNAI is enriched at stereocilia distal tips and required for their postnatal elongation and bundle morphogenesis-two characteristics shared with MYO15A (short isoform), WHRN, and EPS8 proteins. Here we first performed a comprehensive genetic analysis of the mouse auditory epithelium to show that GPSM2, GNAI, MYO15A, and WHRN operate in series within the same pathway. To understand how these functionally disparate proteins act as an obligate complex, we then systematically analyzed their distribution in normal and mutant bundles over time. We discovered that WHRN-GPSM2-GNAI is an extra module recruited by and added to a pre-existing MYO15A-EPS8 stereocilia tip complex. This extended complex is only present in the first, tallest row, and is required to stabilize larger amounts of MYO15A-EPS8 than in shorter rows, which at tips harbor only MYO15A-EPS8. In the absence of GPSM2 or GNAI function, including in the epistatic Myo15a and Whrn mutants, bundles retain an embryonic-like organization that coincides with generic stereocilia at the molecular level. We propose that GPSM2-GNAI confers on the first row its unique tallest identity and participates in generating differential row identity across the hair bundle.


Assuntos
Proteínas de Ciclo Celular/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Células Ciliadas Auditivas Internas/fisiologia , Estereocílios/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos
15.
Dev Biol ; 443(2): 153-164, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217595

RESUMO

Hundreds of thousands of cis-regulatory DNA sequences are predicted in vertebrate genomes, but unlike genes themselves, few have been characterized at the functional level or even unambiguously paired with a target gene. Here we serendipitously identified and started investigating the first reported long-range regulatory region for the Nr2f1 (Coup-TFI) transcription factor gene. NR2F1 is temporally and spatially regulated during development and required for patterning and regionalization in the nervous system, including sensory hair cell organization in the auditory epithelium of the cochlea. Analyzing the deaf wanderer (dwnd) spontaneous mouse mutation, we traced back the cause of its associated circling behavior to a 53 kb deletion removing five exons and adjacent intronic regions of the poorly characterized Mctp1 gene. Interestingly, loss of Mctp1 function cannot account for the hearing loss, inner ear dysmorphology and sensory hair cell disorganization observed in dwnd mutants. Instead, we found that the Mctp1dwnd deletion affects the Nr2f1 gene located 1.4 Mb away, downregulating transcription and protein expression in the embryonic cochlea. Remarkably, the Mctp1dwnd allele failed to complement a targeted inactivation allele of Nr2f1, and transheterozygotes or Mctp1dwnd homozygotes exhibit the same morphological defects observed in inner ears of Nr2f1 mutants without sharing their early life lethality. Defects include improper separation of the utricle and saccule in the vestibule not described previously, which can explain the circling behavior that first brought the spontaneous mutation to attention. By contrast, mice homozygous for a targeted inactivation of Mctp1 have normal hearing and inner ear structures. We conclude that the 53 kb Mctp1dwnd deletion encompasses a long-range cis-regulatory region essential for proper Nr2f1 expression in the embryonic inner ear, providing a first opportunity to investigate Nr2f1 function in postnatal inner ears. This work adds to the short list of long-range regulatory regions characterized as essential to drive expression of key developmental control genes.


Assuntos
Fator I de Transcrição COUP/genética , Fator I de Transcrição COUP/metabolismo , Orelha Interna/embriologia , Animais , Fator I de Transcrição COUP/fisiologia , Surdez/genética , Orelha Interna/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Adv Exp Med Biol ; 1002: 209-225, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28600788

RESUMO

Mitosis is a process requiring strict spatial organization of cellular components. In particular, the orientation of the mitotic spindle with respect to the tissue defines the division plane. In turn, the orientation of cell division can regulate tissue morphology or the fate of daughter cells. While we have learned much about the mechanisms of mitotic spindle orientation, recent studies suggest that the proteins implicated can also play important roles in post-mitotic cells. Interestingly, post-mitotic protein function often involves polarizing the cell cytoskeleton during differentiation, mirroring its ability to orient the mitotic spindle during division. This review focuses on alternative functions of the spindle orientation machinery after division, when the cell undergoes a specialization process associated with differentiation or mature function, and discusses diseases associated to those alternative functions.


Assuntos
Diferenciação Celular , Mitose , Fuso Acromático/patologia , Animais , Humanos , Fenótipo , Transdução de Sinais , Fuso Acromático/metabolismo
17.
Development ; 143(21): 3926-3932, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660326

RESUMO

Sensory perception in the inner ear relies on the hair bundle, the highly polarized brush of movement detectors that crowns hair cells. We previously showed that, in the mouse cochlea, the edge of the forming bundle is defined by the 'bare zone', a microvilli-free sub-region of apical membrane specified by the Insc-LGN-Gαi protein complex. We now report that LGN and Gαi also occupy the very tip of stereocilia that directly abut the bare zone. We demonstrate that LGN and Gαi are both essential for promoting the elongation and differential identity of stereocilia across rows. Interestingly, we also reveal that total LGN-Gαi protein amounts are actively balanced between the bare zone and stereocilia tips, suggesting that early planar asymmetry of protein enrichment at the bare zone confers adjacent stereocilia their tallest identity. We propose that LGN and Gαi participate in a long-inferred signal that originates outside the bundle to model its staircase-like architecture, a property that is essential for direction sensitivity to mechanical deflection and hearing.


Assuntos
Padronização Corporal , Proteínas de Transporte/fisiologia , Polaridade Celular , Cóclea/embriologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Células Ciliadas Auditivas/fisiologia , Animais , Padronização Corporal/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Polaridade Celular/genética , Cóclea/citologia , Surdez/embriologia , Surdez/genética , Embrião de Mamíferos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
Front Mol Neurosci ; 5: 86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912601

RESUMO

Many of the models of neurodevelopmental processes such as cell migration, axon outgrowth, and dendrite arborization involve cell adhesion and chemoattraction as critical physical or mechanical aspects of the mechanism. However, the prevention of adhesion or attraction is under-appreciated as a necessary, active process that balances these forces, insuring that the correct cells are present and adhering in the correct place at the correct time. The phenomenon of not adhering is often viewed as the passive alternative to adhesion, and in some cases this may be true. However, it is becoming increasingly clear that active signaling pathways are involved in preventing adhesion. These provide a balancing force during development that prevents overly exuberant adhesion, which would otherwise disrupt normal cellular and tissue morphogenesis. The strength of chemoattractive signals may be similarly modulated. Recent studies, described here, suggest that Down Syndrome Cell Adhesion Molecule (DSCAM), and closely related proteins such as DSCAML1, may play an important developmental role as such balancers in multiple systems.

19.
Dev Cell ; 22(1): 5-6, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22264725

RESUMO

Previous models of neuronal dendrite arborization suggested that contact-dependent self-avoidance between dendrite branches prevents self-crossings within the arbor. Two papers in Neuron show how integrin-mediated adhesion to the extracellular matrix restricts dendrites to a two-dimensional space to optimize this mechanism (Han et al., 2012; Kim et al., 2012).

20.
Proc Natl Acad Sci U S A ; 108(25): 10320-5, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646512

RESUMO

Bardet-Biedl syndrome (BBS) is a pleiotropic, heterogeneous human disease whose etiology lies primarily in dysfunctional basal bodies and/or cilia. Both BBS patients and several BBS mouse models exhibit impaired olfactory function. To explore the nature of olfactory defects in BBS, a genetic ablation of the mouse Bbs8 gene that incorporates a fluorescent reporter protein was created. The endogenous BBS8 protein and reporter are particularly abundant in olfactory sensory neurons (OSNs), and specific BBS8 antibodies reveal staining in the dendritic knob in a shell-like structure that surrounds the basal bodies. Bbs8-null mice have reduced olfactory responses to a number of odorants, and immunohistochemical analyses reveal a near-complete loss of cilia from OSNs and mislocalization of proteins normally enriched in cilia. To visualize altered protein localization in OSNs, we generated a SLP3(eGFP) knock-in mouse and imaged the apical epithelium, including dendritic knobs and proximal cilia, in ex vivo tissue preparations. Additionally, protein reagents that reflect the characteristic neuronal activity of each OSN revealed altered activity in Bbs8-null cells. In addition to previously known defects at the ciliary border, we also observed aberrant targeting of OSN axons to the olfactory bulb; axons expressing the same receptor display reduced fasciculation and project to multiple targets in the olfactory bulb. We suggest that loss of BBS8 leads to a dramatic and variable reduction in cilia, the essential signaling platform for olfaction, which alters the uniformity of responses in populations of OSNs expressing the same receptor, thereby contributing to the observed axon-targeting defects.


Assuntos
Axônios/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Transtornos do Olfato/fisiopatologia , Proteínas/metabolismo , Olfato/fisiologia , Animais , Síndrome de Bardet-Biedl/fisiopatologia , Cílios/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Proteínas/genética , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...