Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13307, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922639

RESUMO

We address the challenge, due to sparse observational records, of investigating long-term changes in the storm surge climate globally. We use two centennial and three satellite-era daily storm surge time series from the Global Storm Surge Reconstructions (GSSR) database and assess trends in the magnitude and frequency of extreme storm surge events at 320 tide gauges across the globe from 1930, 1950, and 1980 to present. Before calculating trends, we perform change point analysis to identify and remove data where inhomogeneities in atmospheric reanalysis products could lead to spurious trends in the storm surge data. Even after removing unreliable data, the database still extends existing storm surge records by several decades for most of the tide gauges. Storm surges derived from the centennial 20CR and ERA-20C atmospheric reanalyses show consistently significant positive trends along the southern North Sea and the Kattegat Bay regions during the periods from 1930 and 1950 onwards and negative trends since 1980 period. When comparing all five storm surge reconstructions and observations for the overlapping 1980-2010 period we find overall good agreement, but distinct differences along some coastlines, such as the Bay of Biscay and Australia. We also assess changes in the frequency of extreme surges and find that the number of annual exceedances above the 95th percentile has increased since 1930 and 1950 in several regions such as Western Europe, Kattegat Bay, and the US East Coast.


Assuntos
Clima , Tempo (Meteorologia) , Austrália , Europa (Continente) , Mar do Norte
2.
Nature ; 603(7903): 841-845, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35355000

RESUMO

Coastal communities across the world are already feeling the disastrous impacts of climate change through variations in extreme sea levels1. These variations reflect the combined effect of sea-level rise and changes in storm surge activity. Understanding the relative importance of these two factors in altering the likelihood of extreme events is crucial to the success of coastal adaptation measures. Existing analyses of tide gauge records2-10 agree that sea-level rise has been a considerable driver of trends in sea-level extremes since at least 1960. However, the contribution from changes in storminess remains unclear, owing to the difficulty of inferring this contribution from sparse data and the consequent inconclusive results that have accumulated in the literature11,12. Here we analyse tide gauge observations using spatial Bayesian methods13 to show that, contrary to current thought, trends in surge extremes and sea-level rise both made comparable contributions to the overall change in extreme sea levels in Europe since 1960 . We determine that the trend pattern of surge extremes reflects the contributions from a dominant north-south dipole associated with internal climate variability and a single-sign positive pattern related to anthropogenic forcing. Our results demonstrate that both external and internal influences can considerably affect the likelihood of surge extremes over periods as long as 60 years, suggesting that the current coastal planning practice of assuming stationary surge extremes1,14 might be inadequate.


Assuntos
Desastres , Elevação do Nível do Mar , Teorema de Bayes , Mudança Climática , Europa (Continente)
3.
iScience ; 25(1): 103613, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35036862

RESUMO

The Polyomaviridae is a family of ubiquitous dsDNA viruses that establish persistent infection early in life. Screening for human polyomaviruses (HPyVs), which comprise 14 diverse species, relies upon species-specific qPCRs whose validity may be challenged by accelerating genomic exploration of the virosphere. Using this reasoning, we tested 64 published HPyV qPCR assays in silico against the 1781 PyV genome sequences that were divided in targets and nontargets, based on anticipated species specificity of each qPCR. We identified several cases of problematic qPCR performance that were confirmed in vitro and corrected through using degenerate oligos. Furthermore, our study ranked 8 out of 52 tested BKPyV qPCRs as remaining of consistently high quality in the wake of recent PyV discoveries and showed how sensitivity of most other qPCRs could be rescued by annealing temperature adjustment. This study establishes an efficient framework for ensuring confidence in available HPyV qPCRs in the genomic era.

4.
Sci Data ; 8(1): 125, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947872

RESUMO

Storm surges are among the deadliest coastal hazards and understanding how they have been affected by climate change and variability in the past is crucial to prepare for the future. However, tide gauge records are often too short to assess trends and perform robust statistical analyses. Here we use a data-driven modeling framework to simulate daily maximum surge values at 882 tide gauge locations across the globe. We use five different atmospheric reanalysis products for the storm surge reconstruction, the longest one going as far back as 1836. The data that we generate can be used, for example, for long-term trend analyses of the storm surge climate and identification of regions where changes in the intensity and/or frequency of storms surges have occurred in the past. It also provides a better basis for robust extreme value analysis, especially for tide gauges where observational records are short. The data are made available for public use through an interactive web-map as well as a public data repository.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA